tokenpocket钱包官网下载app|wb分析

作者: tokenpocket钱包官网下载app
2024-03-09 21:54:14

WB条带灰度分析及数据处理 - 知乎

WB条带灰度分析及数据处理 - 知乎首发于生物科研切换模式写文章登录/注册WB条带灰度分析及数据处理myhalic生物科研 课题设计 实验检测当我们处理细胞之后,想看一下该处理对细胞中某一基因表达的影响,我们需要从蛋白水平来看一下该基因表达的蛋白的量的变化,那我们通常会做westernblot,对蛋白进行半定量,通过对westernblot结果的分析,我们可以知道该处理对基因的表达造成了什么影响。对于一些时间点或者是不同组织蛋白表达量的分析就涉及到量的变化。当然我们通过观察处理前后条带的深浅可以大概的判断该处理对基因的表达造成了什么影响,但是这种判断是存在误差的,误差来源于我们上样的时候并不能保证每个加样孔的上样量都一样,所以我们不能只通过观察条带的深浅来判断该处理对基因的表达造成了什么影响。这时候就需要对westernblot的结果条带的灰度值进行计算并做统计分析——目的蛋白的灰度值除以内参的灰度值,以校正误差,所得结果代表某样品的目的蛋白相对含量,这样得到的结果才更加准确、更有说服力。一些成像软件带有此分析工具,比如QuantityOne,Bandscan,Gel-ProAnalyzer,TanonImage软件等成像系统专用软件。除了这些软件,还有一个比较简单的综合性质图像处理软件ImageJ可以很方便的进行灰度分析,而且ImageJ是免费软件,可以在其官网直接下载使用。利用ImageJ软件进行WB条带灰度分析时存在两种方法,此处只列举一种方法,具体步骤如下:1、打开Image J软件。2、导入WB条带图片:File→Open→找到WB条带。3、把图片转化成灰度图片:Image→Type→8-bit。4、消除图片背景的影响:Process→Subtract Background,在弹出的对话框中,填上50基本就可以了,并勾上Lightbackground,点击OK。此时图片背景会变白一些。5、设置定量参数:Analyze→Set Measurements。在弹出的对话框中勾选Area、Mean grayvalue、Min& max gray value、Integrated density。6、设置单位:Analyze→Set Scale。在弹出的对话框“Unit of length”后面填上“pixels”,其他的不用改动。7、把WB图片转换成亮带:Edit → Invert。8、选择菜单栏下的不规则圆形工具,将圆圈手动拉倒第一条带,并尽量将条带都圈起来。9、点击菜单栏Analyze下拉出现的measurement,即可弹出你选定区域的灰度统计值。也可以点击快捷键(英文状态下的键盘m)。10、手动移动不规则圆圈至下一条条带,重复8、9步骤,直至所有条带都被测量。11、当测定完所有条带,选结果中的“Edit”的“Select All”,然后复制数据“IntDen”到Excel表即可进行分析。也可以直接在Results对话框中,选择File → Saveas,直接导出excel表格。12、在excel表格中将目的蛋白的灰度值除以内参蛋白的灰度值,进行归一化处理。13、在GraphpadPrism软件中作柱状图。经过灰度统计分析后得到的结果更准确更有说服力,是不是感觉上升了一个档次呢?编辑于 2018-09-30 16:24数据处理灰度​赞同 177​​7 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录生物科研一群可爱的科研团队,科研生活,经

蛋白免疫印迹( Western Blot)详细操作步骤 - 知乎

蛋白免疫印迹( Western Blot)详细操作步骤 - 知乎首发于细胞生物切换模式写文章登录/注册蛋白免疫印迹( Western Blot)详细操作步骤岚solo原理:蛋白免疫印迹( Western Blot,WB)是将蛋白样本通过聚丙烯酰胺电泳按分子量大小分离,再转移到杂交膜(blot)上,然后通过一抗/二抗复合物对靶蛋白进行特异性检测的方法。 WB 是进行蛋白质分析最流行和成熟的技术之一。本SOP包括Western Blot 操作方法及常见问题分析,有助于成功完成 WB。一、蛋白样本提取制备1 细胞或组织裂解2 蛋白酶和磷酸酶抑制剂3 蛋白定量4 电泳上样样品的准备二、 电泳1 PAGE 胶的制备2 蛋白分子量 Marker3 阳性对照4 内参对照5 上样与电泳三、 转膜与显色( Western Blot)1 胶中蛋白的检测2 蛋白转膜3 膜上蛋白的检测:丽春红4 膜的封闭5 一抗的孵育6 二抗的孵育7 显色四、常见问题分析与解决方案五、试剂及缓冲液配方一、蛋白样本提取制备蛋白样品制备是 Western Blotting 的第一步,是决定 WB 成败的关键步骤之一。蛋白提取总体原则与注意事项包括:1) 尽可能提取完全或降低样本复杂度使得集中于提取目的蛋白(通过采用不同提取方法或选择不同的试剂盒产品)。2) 保证蛋白处于可以溶解状态(通过裂解液的pH 、盐浓度、 表面活性剂、还原剂等的选择实现)。3) 提取过程防止蛋白降解、聚集、沉淀、修饰等(全程保证在冰盒中低温操作,加入合适的蛋白酶和磷酸酶抑制剂)。4) 尽量去除核酸,多糖,脂类等干扰分子(通过加入核酸酶或采取不同提取策略)。5) 样品分装,长期于-80℃中保存,避免反复冻融。1-1 细胞或组织裂解1-1-1 细胞裂解1. 培养的细胞经预冷的 PBS 漂洗 2 次;2. 吸净PBS,加入预冷的裂解液(使用前裂解液中加入蛋白酶和磷酸酶抑制剂)(0.1 ml /106 cells);结合不同培养板及实际细胞数量级及参照下表加入相应量裂解液: 面积(cm2)细胞量(个)裂解液量(μl)96 孔培养板0.320.4-1.0×10520-5024 孔培养板20.3-0.6×10630-6012 孔培养板4.50.6-1.2×10660-1206 孔培养板9.61.2-2.5×106120-2503.5 cm 培养皿81.0-2.0×106100-2006 cm 培养皿212.5-5.0×106250-50010 cm 培养皿550.7-1.5×107700-150025cm2 培养瓶253.0-6.0×106300-60075cm2 培养瓶751.0-2.0×1071000-20003. 用细胞刮子刮取贴壁细胞,将细胞及裂解液温和地转移至预冷的离心管中;不能用细胞刮子刮取的情况可直接冰上裂解30min后用枪多次吹打至细胞完全裂解;4. 4℃摇动 30 min;5. 4℃离心 12000 rpm,20 min;6. 轻轻吸取上清,转移至新预冷的离心管中置于冰上,即为蛋白样本,弃沉淀。蛋白样本暂时不作处理时可以放入-80℃保存。7. 目的蛋白非细胞外基质(ECM)或对胰酶不敏感时也可以采用胰酶消化法收集细胞(即细胞吸去培养基,PBS 漂洗 2 次,加入胰酶消化至脱落,加入预冷的PBS,移入预冷的EP管,离心收集细胞,加入预冷裂解液(使用前加入蛋白酶和磷酸酶抑制剂),依次按上面4,5,6步骤处理。1-1-2 组织裂解1. 用预冷的工具分离目的组织,尽量置于冰上以防蛋白酶水解;2. 将组织块放在圆底的微量离心管或 EP管中,加入液氮冻结组织于冰上均质研磨,长期可保存于-80°C;3. 每约10 mg组织加入约200 μl 预冷的裂解液(使用前加入蛋白酶和磷酸酶抑制剂),冰浴匀浆后置于4℃摇动2h,裂解液体积与组织样本量有适当比例(最终的蛋白浓度至少达到1 mg/ml,理想的蛋白浓度应为1-5 mg/ml).4. 4℃离心 12000 rpm,20 min,轻轻吸取上清,转移至新预冷的微量离心管中置于冰上,即为蛋白样本,弃沉淀。蛋白样本暂时不作处理时可以放入-80℃保存。1-2蛋白酶抑制剂本实验室使用的蛋白酶抑制剂为PMSF,抑制丝氨酸蛋白酶(如胰蛋白酶,胰凝乳蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶)。在水液体溶液中不稳定,30min就会降解一半,应在使用前从贮存液中现用现加于裂解缓冲液中。工作浓度一般用1mM,1:100(V/V)加入贮液(100mM PMSF),样品处理超过1h,补加一次。PMSF剧毒,为了安全和健康,请穿实验服并戴一次性手套操作.PMSF严重损害呼吸道粘膜、眼睛及皮肤,吸入、吞进或通过皮肤吸收后有致命危险。一旦眼睛或皮肤接触了PMSF,应立即用大量水冲洗之。PMSF在水溶液中的活性丧失速率随pH值的升高而加快,且25℃的失活速率高于4℃。pH值为8.0时,20μmmol/l PMSF水溶液的半寿期大约为85min,这表明将PMSF溶液调节为碱性(pH>8.6)并在室温放置数小时后,可安全地予以丢弃。除PMSF外,裂解液中还需加入蛋白酶和磷酸酶抑制剂(做磷酸化蛋白时必须加),推荐购商品化蛋白酶和磷酸酶抑制剂复合试剂盒或 COOKTAIL,或按下表配制:备注:其中Sodium orthovanadate 配制活化方法如下:所有步聚均需在通风橱中进行:1). 用双蒸水配制100 mM 正矾酸钠溶液;2). 用盐酸HCl 调至pH 9.0;3). 煮沸至溶液无色,尽量减少水分挥发;4). 冷却至室温;5). 再调pH 至 9.0;6). 再煮沸至无色;7). 重复上述过程,直至溶液煮沸冷却后达pH 9.0;8). 用水定容至原体积;9). 分装保存于- 20°C. 溶液变黄则弃之不用。1-3 蛋白定量BCA 法以牛血清白蛋白 (BSA) 作为标准曲线。基于双缩脲原理,碱性条件下蛋白质将 Cu2+ 还原成 Cu1+, BCA(Bicinchoninic 酸)螯合 Cu1+ 作为显色剂,产生兰紫色并在 562 nm 有吸收峰,单价 Cu1+ 与蛋白呈剂量相关性,灵敏性很高,试管法可测范围 20-2000 μg/ml,微孔法为 0.5-10μg/ml。不易受一般浓度去污剂的干扰。可耐受螯合剂、略高浓度的还原剂的影响,40min内抗干扰能力强。BCA测定方法如下:1) 标准曲线的绘制:取一块酶标板,按照下表加入试剂:孔号01234567蛋白标准溶液(μL)01234567去离子水(μL)2019181716151413对应蛋白含量(μg)051015202530352) 根据样品数量,按 50 体积 BCA 试剂 A 加 1 体积 BCA 试剂 B(50:1)配制适量 BCA 工作液,充分混匀;3) 各孔加入 200μL BCA 工作液;4) 把酶标板放在振荡器上振荡 30sec,37℃放置 30 min,然后在 562nm 下比色测定。以蛋白含量(μg)为横坐标,吸光值为纵坐标,绘出标准曲线;5) 稀释待测样品至合适浓度,使样品稀释液总体积为 20μL,加入 BCA 工作液 200μL,充分混匀,37℃放置 30 min后,以标准曲线 0 号管做参比,在 562nm 波长下比色,记录吸光值;6) 根据所测样品的吸光值,在标准曲线上即可查得相应的蛋白含量(μg),除以样品稀释液总体积(20μL),乘以样品稀释倍数即为样品实际浓度(单位:μg/μL)。1-4 电泳上样样品的准备1-4-1变性、还原蛋白样本一般的抗体只能识别抗原蛋白中的部份序列结构(表位),因此,为使抗体能够达到结合该表位而需要将蛋白样本进行变性,使之打开折叠的空间结构,蛋白变性一般使用含阳离子变性去污剂如 SDS 的上样 buffer (loading buffer),并于 95-100°C 煮沸5 min,对于多次跨膜蛋白,可以于 70°C 加热 5-10 min,本实验室的 上样 buffer 称为5×SDS凝胶还原型加样缓冲液,上样时与样本1:4混合后变性上样即可。SDS是阴离子去污剂、变性剂。氨基酸侧链与 SDS 充分结合形成带负电荷的蛋白质-SDS 胶束,蛋白质-SDS 胶束所带的负电荷大大超过了蛋白质分子原有的电荷量,消除了不同分子之间原有的电荷差异,SDS与强还原剂一起使蛋白分子氢键、疏水键打开,使蛋白质分子线性化。1-4-2 天然和非还原样本某些抗体识别的表位是非连续氨基酸构成的蛋白三维结构,此种情况则需要进行非变性的 WB,抗体的说明书一般会标注,这种非变性电泳不加 SDS,样本也不需煮沸。某些抗体仅识别蛋白的非还原态,如某些 cysteine 基的氧化态,即loading buffer 和电泳液中不加入β-巯基乙醇和或DTT。data-draft-type="table" data-size="normal" data-row-style="normal">蛋白状态凝胶状态loading buffer电泳缓冲液还原—变性还原和变性有β-巯基乙醇或DTT ,有SDS有 SDS还原—天然还原和非变性有β-巯基乙醇或DTT ,无 SDS无 SDS氧化-变性非还原和变性无β-巯基乙醇或DTT ,有 SDS有 SDS氧化-还原非还原和天然无β-巯基乙醇或DTT ,无 SDS无 SDS注:除说明书特别标注之外,一般情况下,均使用变性和还原电泳二、 电泳SDS-PAGE基本原理:1). SDS-PAGE 是在蛋白质样品中加入 SDS 和含有巯基乙醇的样品处理液,SDS 是一种很强的阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构。2). 强还原剂巯基乙醇(或二硫苏糖醇,DTT)可以断开二硫键破坏蛋白质的四级结构。使蛋白质分子被解聚成肽链形成单链分子。解聚后的侧链与 SDS 充分结合形成带负电荷的蛋白质-SDS 复合物。3). 蛋白质分子结合 SDS 阴离子后,所带负电荷的量远远超过了它原有的净电荷,从而消除了不同种蛋白质之间所带净电荷的差异。蛋白质的电泳迁移率主要决定于亚基的相对分子质量,而与其所带电荷的性质无关。2-1 PAGE胶的制备聚丙烯酰胺凝胶(polyacrylamide gel)是由单体丙烯酰胺(acrylamide,简称 Acr)和交联剂N,N’-亚甲基双丙烯酰胺(N,N’-methylenebisacylamide,简称 Bis)在催化剂(过硫酸胺或核黄素 AP)和加速剂(四甲基乙二胺 TEMED)作用下聚合交联而成的三维网状结构的凝胶。化学惰性强,具有一定的机械强度和透明度。是良好的电泳介质。聚丙烯酰胺凝胶聚合机理是通过提供氧游离基的催化,使体系发生氧化还原作用来完成的。催化体系主要有化学催化(AP-TEMED)和光化学催化(核黄素-TMTED)体系。PAGE胶分为连续系统和不连续系统两大类。连续系统电泳体系中缓冲液 pH 值与凝胶中的相同。带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中带电颗粒在电场中泳动不仅有电荷效应、分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续电泳 作用缓冲液 PH凝胶浓度浓缩胶使蛋白样品浓缩pH6.8 Tris-HCl低,2-5%分离胶使蛋白样品分离pH8.8 Tris-HCl高,根据蛋白大小不连续系统的浓缩效应:凝胶层的不连续性:浓缩胶的孔径大,分离胶的孔径小。在电场的作用下,蛋白质颗粒在大孔胶中遇到的阻力小,移动快。而在小孔胶中遇到的阻力大,移动慢。因此,在两层凝胶的交界处,由于凝胶孔径的不连续性使样品迁移受阻而压缩成很窄的区带。缓冲液离子成分和pH的不连续性:HCl易解离出Cl- ,它在电场中迁移率大,走在最前面,故称为快离子或前导离子。电极缓冲液中的甘氨酸在pH6.8 的缓冲液中解离度很小,仅为 0.1-1%,因而在电场中迁移率很小,称为慢离子或尾随离子。蛋白质均带负电荷,在电场中均移向正极,其有效迁移率介于快慢离 子之间,于是蛋白质就在快慢离子间形成的界面处,被浓缩成极窄的区带。当进入pH8.8的分离胶时,甘氨酸解离度增加,其有效迁移率超过蛋白质,因此氯离子和甘氨酸离子沿着离子界面继续前进。蛋白质分子由于分子量大,被留在后面,然后分离成多个区带。根据SDS聚丙烯酰胺的有效分离范围选择分离胶浓度。SDS-PAGE胶有效分离范围聚丙烯酰胺胶浓度%线性分离范围/kDa557-2127.536-941020-801212-601510-43分离胶的配置:将二块玻璃板叠放整齐,用夹子两边夹好,将这二块玻璃板固定在底座上。插入配套梳子,在梳子下缘划线,指示灌胶位置,拔去梳子。在分离胶的配置烧杯中按配方加料,混匀后利用移液器将分离胶(避免气泡产生)滴入二块玻璃板之间,至液面达到梳子下缘1cm 处。用移液器缓慢加入饱和正丁醇或水,注意不要冲乱胶面。静置,待分离胶聚合后,倒去或用滤纸吸去水层。浓缩胶的配制:在浓缩胶的配置烧杯中按配比加料,混匀后即刻用移液器加浓缩胶(避免气泡产生)覆于二块玻璃板之间的分离胶之上至满,轻轻插入梳子(插入梳子时一边倾斜直至全部插入,防止产生气泡)。静置待其凝结后,即制成凝胶板。凝胶制成后最少需放置2h或最好湿盒过夜后才能使用,保证交联反应完全。2-2 蛋白分子量 Marker预染或非预染各种分子量的蛋白,用于标示电泳中蛋白的大小和示踪。2-3阳性对照目的蛋白或明确表达目的蛋白的组织或细胞的蛋白提取物,用于检验整个实验体系和过程的正确性有效性、特别是一抗的质量和效率。建议使用对照,可查阅文献或抗体说明书选择购买或自提对照样本。2-4 内参对照管家基因编码的、很多组织和细胞中都稳定表达的蛋白,用于检测整个 WB 实验过程及体系是否正常工作,并作为半定量检测目的蛋白表达量的标准对照必须设立。内参名称分子量大小适用范围β-actin43kDa胞浆和全细胞GAPDH30-40 kDa胞浆和全细胞Tubulin55 kDa胞浆和全细胞VCDA1/Porin31 kDa线粒体COXIV16 kDa线粒体Lanin B166 kDa细胞核(不适于去除核膜的样本)TBP38 kDa细胞核(不适于去除DNA的样本)2-5上样电泳蛋白抗原上样量为30 ug。根据样品量选择SDS-PAGE电泳玻璃板间隙厚度,一般0.75mm间隙15孔的上样量 < 15uL/孔,1mm间隙10孔的上样量 < 30ul/孔。上样:将二块玻璃板制成的凝胶板子上的夹子卸去,将凝胶板垂直靠在电泳槽里的电源架上,使凝胶板的凹沿面靠向电源架。通常两块凝胶板共用一个电源架。将凝胶板与电源架按要求固定于电源槽内。按要求加入电泳缓冲液,使分别加入在两块凝胶板中间电源架内的电泳缓冲液与加入在电泳槽中的电泳缓冲液互不相通。轻轻地拔去凝胶板内的梳子。取处理后的样品液,用微量进样器吸取适量样品液,将样品液缓缓加入凝胶板内地凹口部位(样品点入处)。注意不要冲散样品。电泳:用二根导线连接电泳槽与电泳仪,注意红色与黑色电极的插头和插口相配。电泳时上层胶使用低电压恒压电泳,打开电源将将电压调到80v(一般15min左右),而在溴酚蓝进入下层胶时使用高压恒压电泳,将电压调到120v至溴酚蓝到达胶的底端处附近即可停止电泳。三、 转膜与显色3-1胶中蛋白的检测电泳后检测蛋白是否迁移正确与平均,可采用锌染(负染)、胶染(blue silver)或考马斯蓝染色检测,如果凝胶中的蛋白需要进行转膜则需可逆的锌染法,否则可以采用不可逆考马斯亮蓝法染色。锌染法(负染):电泳胶用蒸馏水洗30秒,加入含0.1% SDS 的0.2 M 咪唑溶液摇动染色 10-15 min,再用去离子水洗数秒,加入0.2 M ZnSO4溶液摇动直至在暗背景下蛋白出现透明条带(约1min),移去ZnSO4溶液加入去离子水中止显色;胶置于0.1- 0.25 M Tris/0.25 M EDTA pH 8.0 缓冲液中漂洗脱色两次,再置于电转缓冲液中开始转膜。胶染(blue silver)法:电泳胶用蒸馏水洗数30秒,考马斯亮蓝G-250染液室温染色1h至过夜,保持摇匀,回收染液,倒入数次去离子水摇动至脱去多余的染料,蛋白被染成深蓝色。考马斯亮蓝R250法:电泳胶用蒸馏水洗数30秒,考马斯亮蓝R-250染液室温染色1h至过夜,保持摇匀,回收染液,用蒸馏水洗数分钟,倒入脱色液摇匀至脱去多余的染料,蛋白被染成深蓝色。 考马斯亮蓝快速染色脱色方法: a. 电泳结束后,取胶放入适量考马斯亮蓝染色液中,微波炉加热至接近沸腾或刚刚沸腾,立即停止加热。通常对于胶浓度大于10%的胶比较坚韧,在发生煮沸时不易破损;对于胶浓度小于10%的胶,宜尽量避免煮沸,以免出现 胶碎裂的情况。 b. 随后在染色液温度较高的情况下,在室温摇床上摇动5-10分钟。 c. 回收染色液。d. 加入适量脱色液,确保脱色液可以充分覆盖凝胶。e. 微波炉加热至接近沸腾或刚刚沸腾,立即停止加热。 f. 随后在脱色液温度较高的情况下,在摇床上摇动5-10分钟。此时通常可以观察到比较清楚的蛋白条带。 g. 更换新鲜的脱色液,重复步骤e和步骤f,直至蓝色背景基本上全部被脱去,蛋白条带染色效果达到预期。 h. 完成脱色后,可以把凝胶保存在水中,用于后续的拍照等。保存在水中的凝胶会发生溶涨。如需避免溶涨,可以把胶保存在含20%甘油的水中。长期保存可以制备干胶。3-2 蛋白转膜杂交膜的选择是决定 Western blot 成败的重要环节。应根据杂交方案、被转移蛋白的特性以及分子大小等因素,选择合适材质、孔径和规格的杂交膜。用于 Western blot 的膜主要有两种:硝酸纤维素膜(NC) 和PVDF 膜。膜是蛋白印迹实验的标准固相支持物,在低离子转移缓冲液的环境下,大多数带负电荷的蛋白质会与膜发生疏水作用而高亲和力的结合在一起,但在非离子型的去污剂作用下,结合的蛋白还可以被洗脱下来。根据被转移的蛋白分子量大小,选择不同孔径的膜。因为随着膜孔径的不断减小,膜对低分子量蛋白的结合就越牢固。通常用 0.45μm 和 0.2μm 两种规格的膜。大于20kD 的蛋白可用 0.45μm 的膜,小于20kD 的蛋白就要用 0.2μm 的膜了,如用 0.45μm 的膜就会发生“Blowthrough”的现象。最常用于 Western Blot 的转移膜主要是硝酸纤维素(Nitrocellulose, NC)膜和聚偏二氟乙烯(Polyvinylidene Fluoride, PVDF)膜,此外也有用尼龙膜、DEAE 纤维素膜做蛋白印迹。尼龙膜和 NC 膜的特点相似,主要用于核酸杂交。硝酸纤维素(nitrocellulose, NC)膜:NC 与蛋白质靠疏水作用结合,无需预先活化,对蛋白质的活性影响小;非特异性本底显色浅;价格低廉,使用方便。但结合在 NC 上的小分子蛋白质在洗涤时易丢失; NC膜韧性较差,易损坏。聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)膜:与蛋白质亲和力高,用前需在甲醇中浸泡,以活化膜上的正电基团,使其更容易与带负电荷蛋白结合,非常适合于低分子量蛋白的检测。但 PVDF 膜在使用之前必需用纯甲醇浸泡饱和 1-5 秒钟。膜的选择主要根据:1. 膜与目的蛋白分子的结合能力(也就是单位面积的膜能结合蛋白的载量),以及膜的孔径(也就是拦截蛋白的大小);2. 不影响后续的显色检测(也就是适和用于所选的显色方法,信噪比好);3. 如果后继实验有其他要求,比如要做蛋白测序或者质谱分析,还要根据不同目的来挑选不同的转移膜。蛋白因结合 SDS 而带电荷,在电场下从胶中转至膜上,转膜方式分为半干和湿转两种,半干式转膜速度快,而湿式成功率高并特别适合用于分子量大于100KD 的蛋白。湿式转膜三明治排列为:海绵/滤纸/ 胶/ 膜/滤纸/ 海绵,全部紧密排列,特别是胶/膜之间不能留有气泡,三明治安放的方向确认正确,负极方为带负电的胶里的蛋白,向正极方(膜)电迁移。SDS-PAGE电泳完毕,用刀片或薄板将凝胶板的两块玻璃轻轻撬开,使凝胶倾伏在其中一块玻璃板上。用刀片在凝胶上沿分离胶与浓缩胶的交界处,将分离胶切下,并在分离胶的左上角切掉一小角,以标记样品顺序。然后将胶小心移入转膜缓冲液中。剪下与分离胶同样大小的0.45um的PVDF膜,以甲醇浸泡5s。剪下6张同样大小的滤纸,与PVDF膜,胶同时以转移缓冲液平衡15min。在转膜装置上从负极(黑底)到正极放置海绵垫片、滤纸、胶、膜、滤纸、海绵垫片(由下而上),放置时一定要排除气泡,特别是膜与滤纸、胶与膜、滤纸与胶之间。设置转膜电流为恒流,200mA,时间约需40min(蛋白大小不同所需时间不同,一般1KD约为1min)。转完后,取出膜,在与胶相同的位置小心剪去一角,标示电泳方向及吸附有蛋白的膜面。标准的电转缓冲液为 1X Tris-glycine buffer 不含 SDS,但加入 20%甲醇,如果转膜的蛋白分子量大于80KD,则推荐加入 SDS 使之终浓度为 0.1%。PVDF 膜需要浸泡甲醇中 1-2 min,再孵育于冰冷的电转缓冲液中 5 min,胶也需在冰冷的电转缓冲液中平衡 3-5 min,否则转膜时会导致条带变形。电转移缓冲液中 SDS 与甲醇的平衡、蛋白的大小、胶的浓度都会影响转膜效果,如下调整可以增加转膜效率:a) 大蛋白(大于 100 KD )1) 对于大蛋白而言,其在凝胶电泳分离迁移较慢,而从凝胶转出也非常慢,因此对于这种大分子量蛋白应该用低浓度的凝胶, 8% 或更低,但因低浓度的胶非常易碎,所以操作时需十分小心,2) 大蛋白易在凝胶里形成聚集沉淀,因此,转膜时在电转移缓冲液加入终浓度为 0.1%的 SDS,以避免出现这种情况,甲醇易使SDS 从蛋白上脱失,因此应降低电转移缓冲液中甲醇的浓度至 10%或更低,以防止蛋白沉淀。3) 降低电转移缓冲液中甲醇的比例以促进凝胶的膨胀,易于大蛋白的转出。4) 如果使用硝酸纤维素膜,甲醇是必需的,但如果是 PVDF 膜,甲醇可以不必加入电转移缓冲液中,但转膜前PVDF 需用甲醇活化。5) 选择湿式, 4℃ 转膜过夜,以取代半干式转膜。b) 小蛋白(小于 20 KD)1) SDS 妨碍蛋白与膜的结合,特别是对小蛋白更是如此,因此,对于小分子的蛋白,电转移缓冲液中可以不加 SDS 。2) 保持 20% 的甲醇浓度。注意事项:1. 避免直接接触膜,应使用镊子,手指上的油脂与蛋白会封闭转膜效率并易产生背景污斑2. 排列三明治时,尽量用移液器或 15 ml 试管赶除胶与膜之间的气泡,或将三明治放在装有的培养皿中以防止气泡产生,请戴手套!3. 确认裁剪的膜和滤纸与凝胶尺寸相同,否刚导致电流不能通过膜,从而转膜无效4. 鸡抗体易于与 PVDF 膜和其它尼龙膜结合,导致高背景,请替换成硝酸纤维素膜以降低背景。3-3 膜上蛋白的检测:丽春红染色为检测转膜是否成功,无预染蛋白Marker时可用丽春红染色。染色方法:将膜放入 TBST 洗一次,再置于丽春红染色工作液中,在室温下摇动染色 5 min,大量的水洗膜直至水变清无色蛋白条带清晰,(膜也可以用 TBST 或水重新洗后再进行染色)PVDF 膜需用甲醇再活化后用 TBST洗后进行封闭。3-4 膜的封闭杂交膜上有很多非特异性的蛋白质结合位点,为防止这些位点与抗体结合引起非特异的染色和背景,一般用惰性蛋白质或非离子去污剂封闭膜上的未结合位点来降低抗体的非特异性结合。封闭剂应该封闭所有未结合位点而不替换膜上的靶蛋白、不结合靶蛋白的表位,也不与抗体或检测试剂有交叉反应。最常见的封闭剂是 BSA、脱脂奶粉、酪蛋白、明胶和 Tween-20(0.05 - 0.1%)稀溶液 PBST 或者 TBST。Tween-20 的作用:Tween-20 是一种非离子型去污剂,有复性抗原的作用,可提高特异性的识别能力。在做 westen blot 时,用惰性蛋白质或非离子去污剂封闭膜上的未结合位点可以降低抗体的非特异性结合。Tween 这种非离子型去污剂在乳化蛋白时,不破坏蛋白的结构,可减少对蛋白质之间原有的相互作用的破坏。离子型去污剂如 SDS 则破坏蛋白的结构。传统上有两种封闭液:脱脂奶粉或 BSA。脱脂奶粉不能与生物素化或伴刀豆蛋白标记的抗体一起使用,因为脱脂奶粉含有糖蛋白和生物素。如果封闭剂中含磷酸酶,用磷酸化特异性抗体分析磷酸化蛋白受到影响,因为磷酸酶与印记膜上的磷酸化蛋白接触可使之去磷酸化。检测磷酸化抗体时,不能使用酪蛋白/脱脂奶粉作为封闭剂。某些抗体用 BSA 封闭时因不明原因可能会产生比脱脂奶粉更强的信号,请仔细阅读说明书注明的注意事项和膜的特殊的封闭方法。一般封闭条件为:5% 脱脂奶粉或 BSA 溶液室温或者 37℃缓慢摇荡 1-2 h,特殊情况也可 4℃过夜。根据结果情况调整封闭试剂的浓度和类型。封闭完成后进行洗膜,在方形保鲜盒中加入TBST,将膜放入其中,使TBST没过PVDF膜,在摇床上低速震荡10min洗1次。3-5一抗的孵育孵育 Buffer:按抗体说明书建议的稀释倍数,用封闭液稀释一抗,如果说明书没有建议的稀释倍数,则参照一般推荐的稀释倍数(1:1000-1:2000),一抗浓度过高会导致产生非特异性条带。吸尽封闭液后,立即加入稀释好的一抗,室温或 4℃在摇床上缓慢摇动孵育2 h。孵育时间:一抗的孵育时间可从2h至过夜(一般不超过 18 h)不等,取决于抗体与蛋白的亲和性和蛋白的含量丰度,建议使用较高的抗体稀释倍数和较长的孵育时间来保证特异性结合。孵育温度:尽可能低温孵育,如果在封闭液中孵育一抗过夜,应在 4℃进行否则会产生污染而破坏蛋白(降别是磷酸基团)。孵育一抗时需保持适当的摇动使之均匀覆没膜,防止结合不均匀。孵育完成后吸取一抗,在方形保鲜盒中加入TBST,将膜放入其中,使TBST没过PVDF膜,在摇床上低速震荡10min,重复洗3次。3-6二抗孵育用封闭液稀释二抗至抗体说明书规定浓度,将转有蛋白的PVDF膜浸入装有抗体的方形保鲜盒中,震荡孵育1-2 h。孵育完成后吸取二抗,在方形保鲜盒中加入TBST,将膜放入其中,使TBST没过PVDF膜,在摇床上低速震荡10min,重复洗3-5次。3-7化学发光酶促反应比同位素安全且快速,已经成为 Western Blot 的主流检测方法。酶促反应可以搭配不同的底物从而实现不同的显色方法:化学发光和底物显色,前者灵敏度很高,已经达到皮克级别,甚至还有飞克级别的,灵敏度超过了同位素;而后者由于直接显色而操作简便且成本低。辣根过氧化物酶在H2O2 存在下,氧化化学发光物质鲁米诺(luminol,氨基苯二酰一肼)并发光,在化学增强剂存在下光强度可以增大 1000 倍,通过将印迹放在照相底片上感光就可以检测辣根过氧化物酶的存在。发光液(A液、B液)1:1配置(注意避光),用移液器吸取合适量的发光液至覆盖PVDF膜,ECL发光仪上曝光并采集图像。四、常见问题分析与解决方案五、试剂及缓冲液配方1. 试剂:国药AR:丙烯酰胺(Acr)、甲叉双丙烯酰胺(Bis)、过硫酸铵(AP)、Tris、SDS、甲醇、乙醇、甘氨酸(Gly)、冰乙酸、磷酸、硫酸铵(常温保存)。2. 其它试剂:BSA、甘油、β-巯基乙醇、溴酚兰、Tween20、TEMED、丽春红、考马斯亮蓝G250/R250(常温保存);ECL发光液(4℃保存);二抗、蛋白分子量marker、PMSF(-20℃保存)。3. 耗材:PVDF膜(millipore)、滤纸、枪头。4. 缓冲液:30% Acr/Bis(棕色瓶)、10% 过硫酸铵、1×转膜缓冲液、5%BSA或脱脂奶粉封闭液(4℃保存);1.5M Tris-HCl(pH8.8)、1M Tris-HCl(pH6.8)、10% SDS 、5× SDS凝胶还原型加样缓冲液、10× TBS、10×Tris-Gly电泳缓冲液、10×转膜缓冲液、1× Tris-Gly电泳缓冲液、TBST(常温保存)。5. 缓冲液配制:a) 30% Acr/Bis:丙稀酰胺29.2g,甲叉双丙稀酰胺0.8g,双蒸蒸馏水溶解定容至100ml,过滤备用,4°C棕色瓶保存。b) 1.5M Tris-HCl(pH8.8):Tirs 18.2g,溶于蒸馏水中,定容至100mL。加入盐酸调节pH值至8.8,常温保存。c) 1M Tris-HCl(pH6.8):Tirs 12.1g,溶于蒸馏水中,定容至100ml。加入盐酸调节pH值至6.8,常温保存。d) 10% SDS:SDS 20.0g溶于蒸馏水中,定容至200ml,加热至68°C助溶。常温保存。e) 10% 过硫酸铵(AP):过硫酸铵0.1g,溶于1ml 蒸馏水中,现配现用或分装冷冻备用。4°C保存时最多不超过2w。f) 5×SDS凝胶还原型加样缓冲液:0.25 M Tris-HCl (pH 6.8) 1ml、SDS 0.25g、甘油 0.189g、溴酚兰 25mg,双蒸水定容到5ml,使用前加入β-巯基乙醇0.5ml。g) 10× Tris-Gly电泳缓冲液:Tris 30.2g,甘氨酸188g,SDS 10g,加入双蒸水定容至1L。1× Tris-Gly电泳缓冲液:用100ml量筒取100ml 10× Tris-Gly电泳缓冲液,加入到1000ml容量瓶中,用蒸馏水定容到1000ml。h) 10×转膜缓冲液: Tris 30.3g 、甘氨酸151.1g 、定容至800ml。1×转膜缓冲液:10×转膜缓冲液80ml、甲醇200ml, 加蒸馏水720 ml。i) 10× TBS:Tris 24.2g、氯化钠80g,双蒸水定容至1L,调PH 7.6。j) TBST:用100ml量筒取100ml 10× TBS,加入到1L容量瓶中,用蒸馏水定容到1L,再加入1ml Tween 20混合均匀。k) 封闭液:2g BSA或脱脂奶粉,溶于装有40ml TBST的50ml离心管中,配成5% BSA或脱脂奶粉封闭液,现配现用,短期4°C保存,较长时间则冷冻保存。l) 100mM PMSF:称量0.174g PMSF(针状结晶固体)溶于10ml 无水乙醇,震荡混匀,保存在-20°C。m) 2%的丽春红贮备液: 丽春红2g,三氯乙酸30g,磺基水杨酸30g,加水定容至100ml,过滤,常温保存。丽春红染色工作液:2%的丽春红贮备液 1:10 稀释,即加 9 倍的 ddH2O。n)考马斯亮蓝R250染色液:0.25%考马斯亮蓝R250,40%双蒸水, 10% 冰乙酸,50%甲醇混匀,过滤,常温棕色瓶保存。o)考马斯亮蓝R250染色脱色液:常温保存: 67.5%双蒸水,7.5%冰乙酸, 25%甲醇混匀,常温保存。p)考马斯亮蓝G-250染液: 10%磷酸,10%硫酸铵,0.12%考马斯亮蓝G-250, 20%甲醇,常温棕色瓶保存。配制方法:按就次序依次加入10%磷酸,10%硫酸铵,等完全溶解后加入0.12%考马斯亮蓝G-250,等完全溶解后加入20%甲醇混匀,过滤。 分离胶配方 5%浓缩胶配方文章来自:无锡菩禾生物医药技术有限公司编辑于 2020-08-13 15:26蛋白表达细胞生物学分子生物学​赞同 771​​8 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录细

ImageJ实用技巧——Western Blot定量分析深入探究(定量分析篇) - 知乎

ImageJ实用技巧——Western Blot定量分析深入探究(定量分析篇) - 知乎首发于ImageJ实用教程切换模式写文章登录/注册ImageJ实用技巧——Western Blot定量分析深入探究(定量分析篇)Treasure琛Western Blot等条带定量分析,是ImageJ最为广泛的一种应用。全网的教程五花八门,步骤流程往往也各不相同。那些教程缺乏基本的原理解释,导致看了教程只会操作,而不知道其中的原理。而且有些教程的部分操作有误,而且不适合所有情况。B站上关于Western定量的视频这个问题在之前没有被重视,因为在条带本身质量和对比度很好的情况下,即使操作有问题,最后也会得到相对正确的趋势。但对于一些变化比较小的趋势,不准确的测量,会导致实验的失败。这篇文章是为了解决这一问题,不仅仅从结果,也从原理出发,系统介绍Western Blot定量分析的正确流程。一、上样和成像阶段在进行Western Blot定量时,我们往往会过多关注分析阶段,而往往忘记了更加重要的上样和成像阶段。没有好的成像结果,往往就分析不出好的结果,这方面具体可以参考之前的这篇文章:对于Western Blot的成像阶段来说,最需要注意的两个因素:上样量以及曝光问题。1、上样量我们在做Western Blot定量时,我们的基本假设是样品浓度和条带之间是线性关系[1]:理论上,样品浓度和条带强度之间的线性关系但这个线性关系是需要进行验证的,在实验室操作中我们往往会加固定量的蛋白,而不确定最佳蛋白上样量,因此在成像时导致条带饱和的可能性很大[2]:定义Western Blot的线性范围从上图可以看出,当Protein load大于4μg后,蛋白质浓度和条带强度之间的线性关系就不太好了。浓度高于5μg后,条带已经饱和,更高的蛋白浓度已经无法通过条带进行定量了。所以在进行Western Blot定量之前,我们最好先探究这一线性范围。用已知浓度的蛋白进行梯度稀释,生成这一的标准曲线,从而确定合适的上样量范围。2、曝光时间成像时,我们需要确保弱的条带也能看到的情况下,信号强的条带不过多地过曝饱和,所以需要确定合适的曝光时间。不同的曝光时间会导致图像有不同的动态范围(Dynamic Range)[3]:曝光时间会影响动态范围和检测下限从上图可以看到,随着曝光时间的增长,虽然弱的孔渐渐显现出来,但信号强的孔会越来越饱和,从而丢失了信息,而且长曝光会增加背景噪声。在实际成像时,建议存储曝光时间,由低到高,不同曝光时间的图像。选取中间动态范围最高的一张进行分析,如图中曝光时间在0.8s时,可以检测到最大的对比范围。二、ImageJ分析条带条带分析有两种方法,一是利用ImageJ/Fiji自带有Gels工具,二是通过框选直接Measure测量。如果操作正确,这两种方法得到的条带趋势是一致的。但两种操作有各自需要注意的地方,如果操作有误,就会测出不同的结果。这里以ImageJ自带的Gels图像为例,分别介绍两种方法对条带进行定量:两种方法的第一步都是背景校正。(当然,如果你存图像的时候,存的是RGB格式,需要Image -> Type -> 8-bit,先把图像转成8-bit)做背景校正是为了减少背景不均,对结果造成的影响。例如下面这种图:在空白地方画一个框,Analyze -> Plot Profile,可以看出背景的变化,这种不均匀的背景会导致结果的偏移:背景校正,通常采用Process -> Subtract Background,用Rolling ball算法[4]。这个算法的本质是提取出图片中均匀变化的背景,将这个背景减去原图:https://imagej.nih.gov/ij/docs/guide/146-29.html#toc-Subsection-29.14关于这个算法的详细描述,可以参考这篇文章的描述:在做Subtract Background时,需要注意的点是合理的选取Rolling ball radius。Rolling ball radius越大,提取出的背景越平滑,条带细节越少;Rolling ball radius越小,会提取出更多细节:大部分教程以及官网给的example,都默认这个Rolling ball radius是50pixel,这是不合理的,这个值需要根据图像的具体情况设置。图像分辨率不同,背景不同,这个值也需要随之改变。设置Rolling ball radius的原则是:只留下图像的背景,而看不到条带的信息[5]。在设置时,可以先勾选Create background(don't subtract)以及preview。观察提取的背景,是否符合这一原则:如果radius合适,再不勾选Create background(don't subtract),点击OK,得到减去背景后的图像:背景校正后,就可以利用Gels工具或者直接框选进行Measure。1、利用Gels工具进行测量(1)用矩形工具框选一行或一列条带(2)将这一行条带设置为第一道(Analyze -> Gels - Select First Lane)/(Ctrl + 1)这时会提醒你确认,这一道条带确实是水平的吗?出现这个警告,是因为图片的尺寸是276(宽)×467(高),高大于宽,所以Gels工具会认为你应该画一个高大于宽的,竖着的矩形,纵向对比条带。这里有个小妙招,可以通过Image -> Adjust -> Canvas Size,把宽的长度增大,从而避免出现只能横向移动条带的问题。(3)画出这一道条带,在横线上的profile(Analyze -> Gels -> Plot Lanes)/(Ctrl + 3)这里需要重点解释一下为什么会画出来这样的profile,这也是大多数教程忽略的一点。这里Plot Lanes,横坐标是刚才框选的这一道条带的长,纵坐标是矩形纵向(宽)的pixel value的和:这个原理和Analyze - Plot Profile是一样的,只不过Gels工具自动把图像做了一个反转。如果我们把整张图Edit - Invert,框选中一个条带,进行Analyze - Plot Profile,也可以看到这样的peak:(4)利用直线将每个峰封口这一步也是最有争议的一步,有两种封口的说法:为什么我们需要对每一峰进行封口?换句话说,为什么这些峰的波谷区域不是0?背后的原因其实是因为这两个条带离得太近了,信号在交界处汇集在了一起:实际条带的峰,交叉的地方就是两个条带交接的地方信号强的条带普遍会更粗,面积更广。所以一个条带的信号在边缘还没有衰减完全,就接上了相邻条带的信号。如果是相邻较远的条带,这种效应就会小很多:所以如果遇到这种需要封口的情况,我建议利用垂直封口的方法。虽然这种方法会稍微损失一点信号(如下图,蓝色区域),但是和整体信号相比是较少的(红色区域):波峰封口的方法是错误的,这种封口方法,认为蓝色区域都是背景,但做完背景校正后,根据Plot Profile,这一部分区域,其实还是条带本身的强度:(5)用魔法棒依次点选每个峰这里的Area,可以理解为这一个条带pixel value的总和/积分。2、直接框选进行测量另一种更简单的方法,是利用矩形工具框选条带进行测量。第一步还是背景校正,如上文所述。(1)将图像反转(Edit -> Invert)一般的条带图像,条带是黑的(pixel value低),越黑代表信号越强。反转后,条带是白的,越亮信号越强。然后根据最大的条带,画一个框:如果框选的时候看不清,可以Image - Adjust - Brightness/Contrast。只要调节对比度后不Apply,就不会更改原始图像的pixel value(2)设置测量参数(Analyze -> Set Measurements)这里需要勾选Integrated density。(3)依次测量每个条带(Analyze -> Measure)IntDen即为Integrated density这里需要注意,直接框选的原则是:尽量选中所有信号,少选中其他条带或者背景。这里我没有更改矩形框的大小,有些教程会根据条带的宽度或者长度,更改矩形框的大小,但只要符合框选的原则,结果不会有显著差别。一些特殊情况:条带跑歪了(1)可以直接用框选的方法测;(2)整体旋转图像(Image -> Transform -> Rotate),将图像旋转水平/竖直;(3)将图像拉直先用Segmented Line,将条带从左向右连接起来。双击后,设置合适的厚度:Edit -> Selection -> Straighten:总结:确定条带强度和蛋白浓度的线性范围;采多个曝光时间的图像,选择Dynamic range最高的图像进行分析;Subtract background需要根据图像,选取合适的Rolling ball radius;利用Gels插件分析,采用垂直封口的方式;上样的时候用间距更大的梳子,避免相领两个条带之间的信号出现交集。如果对于ImageJ使用有什么问题可以发邮件进行一对一指导:更多教程可以关注我的专栏:希望对大家有帮助~参考^Pillai-Kastoori, L., Schutz-Geschwender, A. R., & Harford, J. A. (2020). A systematic approach to Quantitative Western blot analysis. Analytical Biochemistry, 593, 113608. https://doi.org/10.1016/j.ab.2020.113608^Taylor, S. C., Berkelman, T., Yadav, G., & Hammond, M. (2013). A defined methodology for reliable quantification of Western Blot Data. Molecular Biotechnology, 55(3), 217–226.  https://doi.org/10.1007/s12033-013-9672-6^Film and CCD Imaging of Western Blots: Exposure time, signal saturation, and linear dynamic range https://www.licor.com/documents/x7ncrrtjt4t1jqdbp0ai^Sternberg, "Biomedical Image Processing," in Computer, vol. 16, no. 1, pp. 22-34, Jan. 1983.^Gallo-Oller, G., Ordoñez, R., & Dotor, J. (2018). A new background subtraction method for western blot densitometry band quantification through Image Analysis Software. Journal of Immunological Methods, 457, 1–5.  https://doi.org/10.1016/j.jim.2018.03.004编辑于 2023-02-27 23:04・IP 属地上海ImageJ图像处理生物​赞同 381​​31 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录ImageJ实用教程科研图像处理一站式解

Introduction to Western Blotting | Bio-Rad

Introduction to Western Blotting | Bio-Rad

Skip to main content

Browsing Modes for Business Users

Create mode

– the default mode when you create a requisition and PunchOut to Bio-Rad. You can create and edit multiple shopping carts

Edit mode

– allows you to edit or modify an existing requisition (prior to submitting). You will be able to modify only the cart that you have PunchedOut to, and will not have access to any other carts

Inspect mode

– when you PunchOut to Bio-Rad from a previously created requisition but without initiating an Edit session, you will be in this mode. You cannot modify any Cart contents

Please search here

Login | Register

My Bio-Rad

Log Out

Login | Register

ph | en

Contact Us

Quick Order

0

Welcome

Login

Register

My Bio-Rad

Log Out

Specialties Back Close Menu Specialties Life Science Bioprocessing Clinical Research Drug Discovery & Development Translational Research Wastewater Surveillance Clinical Diagnostics Diabetes / Hemoglobinopathies Hospital / Clinical Core Lab Immunology Infectious Disease Molecular Newborn Screening Transfusion Medicine group3 Quality Control Food & Beverage Testing Classroom Education Applications Back Close Menu Applications Life Science Bioprocess Analytics Bioprocess Chromatography Cell Line Development / Characterization Cell Research Gene Expression Analysis Immunology Mutation Detection Pathogen Detection Potency Protein Expression / Characterization / Quantitation Viral / Vector Characterization Clinical Diagnostics Autoimmune Bacteriology Blood Typing, Screening & Antibody Identification Diabetes Hemoglobinopathies Infectious Disease Testing Molecular Diagnostics Mycology Newborn Screening Toxicology Virology group3 Quality Management Data Management Systems Proficiency Testing & EQAS Quality Control Verification & Validation group4 Food & Beverage Testing Food & Beverage Safety Testing Cannabis Testing Veterinary Diagnostics Water Quality Testing group5 Classroom Education Biotechnology Textbook & Program DNA, PCR & Agarose Gel Electrophoresis Genetic Engineering, Microbiology & Model Organisms Proteins, Enzymes & ELISA COVID-19 Assay & Research Products Back Close Menu Products Life Science Products Antibodies Cell Isolation & Analysis Chromatography Digital PCR Electrophoresis & Blotting Flow Cytometers Immunoassays PCR & qPCR Sample Preparation & Quantitation Transfection Clinical Diagnostics Autoimmune Testing Blood Typing & Antibody Detection Diabetes Testing Hemoglobinopathy Testing Infectious Disease Testing Microbiology Testing Newborn Screening Quality Controls Software & Data Analysis group3 Molecular Testing Food & Beverage Testing Classroom Education Promotions Quick Order Services Back Close Menu Services Custom PCR Plastics & Reagents Expert Care Service New Labs & New Grants group3 Remote Diagnostic Services Supply Center Program group4 Trade-Up Program Resources Back Close Menu Resources Documentation Certificate of Analysis Literature Library ​​Electronic IFUs Literature Library Product Safety Data Sheets Quality Management Systems Certificates Quality Control Inserts Learning Center Life Science Clinical Testing Solutions Quality Controls Bioprocess Chromatography Resources Food & Beverage Testing Classroom Resources group3 Tutorials Webinars News & Events Back Close Menu News & Events Events Product News Corporate News

Order Status Quick Order Support

Breadcrumb

Home

Resources

Life Science

Introduction to Western Blotting

Introduction to Western Blotting

Overview  

Sample Prep  

Electrophoresis  

Transfer  

Immunodetection  

Image Acquisition  

Image Analysis  

 

 

Western Blot Learning Center

Instruction for all steps in the western blotting workflow.

 

Need help with western blotting?

Contact a Specialist

Western blotting is a powerful technique that allows you to positively detect your proteins, estimate quantities, and determine their molecular weights. All from a starting mixture of proteins extracted from cells or tissues.

The entire western blotting workflow consists of several individual steps, each of which is critical to producing high-quality data.

This Learning Center provides in-depth information on the theory and practice of each step of the western blotting process, starting from sample preparation to analysis of the final blot

Need help with western blotting?

Contact a Specialist

Sample Preparation

Cells containing your protein of interest must be lysed completely to ensure a high yield while removing non-protein components of cells. Good sample preparation techniques ensure proteins remain undamaged for downstream analysis.

Electrophoresis

Electrophoresis separates the proteins in the sample and provides molecular weight data for detected proteins during subsequent detection.

Transfer

Separated proteins are transferred from the gel to a membrane where they are immobilized. Efficient protein transfer is required for maximum western blot sensitivity.

Detection

A good, clean western relies on the specificity and sensitivity of your antibodies. In addition to detection of specific proteins, the total protein in a sample can also be visualized with total protein stains or newer technologies that eliminate the need for staining and destaining.

Image Acquisition

Accurate imaging of your western blot is crucial for capturing blot data for downstream analysis. Understanding basic imaging concepts such as sensitivity, resolution, and sources of background noise can help you maximize image data quality.

Image Analysis and Quantification

An image of a western blot is rich with information. Some experiments require only a qualitative answer, but properly designed and executed western blot experiments can also provide quantitative data on relative protein expression between samples.

Resources

Western Blot University

Courses designed to make you a western blotting expert.

Western Blot University

Courses designed to make you a western blotting expert.

Enroll Now

Receive Western Blotting Tips and Online Resource Updates

Sign Up to Be the First to Know

 

 

Receive Western Blotting Tips and Online Resource Updates

Keep up to date with useful tips to continuously improve your western blotting experiments from sample preparation through image analysis. Sign up to be the first to be notified when new western blotting resources like tips and tricks, posters, protocols, webinars, and how-to-videos become available.

 

Image

Stain-Free Western Blotting Guide

Find out how Stain-Free technology can revolutionize your western blotting.

Image

Western Blot Selector Tool

Find the right products for you using the free Western Blot Selector Tool.

Image

Protein Standard Temporary Tattoo

Fun and free protein standard tattoo.

Image

Electrophoresis & Western Blotting Layout Post-It

This simple tool allows users to keep track of their Western Blotting experiment from sample preparation to imaging.

This English section is not intended for French healthcare professionals.

These pages list our product offerings in these areas. Some products have limited regional availability. If you have a specific question about products available in your area, please contact your local sales office or representative.

Follow Us

 Bio-rad LinkedIn  Bio-rad Antibodies LinkedIn

 Bio-rad YouTube  Bio-rad Antibodies YouTube

 Bio-rad Twitter  Bio-rad Antibodies Twitter

 Bio-rad Facebook  Bio-rad Antibodies Facebook

 Bio-rad Instagram

 Bio-rad Pinterest

About Bio-Rad

Bioradiations

Contact Us

Sustainability

Sitemap

Corporate News

Careers

Investor Relations

Footer

Home

|

Trademarks

|

Site Terms

|

Cybersecurity

|

Web Accessibility

|

Terms & Conditions

|

Privacy

© 2024 Bio-Rad Laboratories, Inc.

Philippines

研途指南:western blot(WB)蛋白条带处理及数据量化 PS处理条带-ImageJ量化条带-Graphpad统计作图,一次搞定科研三巨头。_哔哩哔哩_bilibili

研途指南:western blot(WB)蛋白条带处理及数据量化 PS处理条带-ImageJ量化条带-Graphpad统计作图,一次搞定科研三巨头。_哔哩哔哩_bilibili 首页番剧直播游戏中心会员购漫画赛事投稿研途指南:western blot(WB)蛋白条带处理及数据量化 PS处理条带-ImageJ量化条带-Graphpad统计作图,一次搞定科研三巨头。

14.1万

38

2021-02-03 22:23:29

未经作者授权,禁止转载212211074865693wb所有科研狗必啃骨头,我准备三期搞定他,小白莫慌。

你们的点赞投币收藏就是我的创作动力。

Part1 :PS处理WB条带及组图BV1Mt4y1z7mq

Part2:ImageJ测量WB条带灰度值BV13y4y1h76s

Part3:Graphpad Prism数据量化作图及统计分析BV15o4y197eF江山水意科技计算机技术知识分享官PS经验分享ImageJwb学习心得GraphPad Prismwestern blot打卡挑战

stupidman1

发消息

公众号:研途指南 Q群755601201

统计学视频会更的,不要急

关注 8.2万

拒绝低效率学习,高效提高GPA!

研途指南 助力科研新人

(6/50)自动连播145.7万播放简介

订阅合集

助力科研新人

文献Figure中统计学P值特殊符号*、#、^、

06:12

研途指南:柱状图误差棒mean±SD和mean±

06:03

一次搞定AI、PS、GraphPad、Image

04:00

研途指南:Photoshop(PS)处理West

14:05

研途指南:实操SD大鼠缺血再灌注损伤模型造模过程

05:29

研途指南:western blot(WB)蛋白条

02:32

【文献检索】比pubmed更好用的检索网站web

11:06

研途指南:(Adobe illustrator)

08:08

缺血再灌注/心肌梗死仪器设备一站式解决

02:02

大鼠缺血再灌注/心肌梗死-结扎位点定位

03:21

研途指南:大小鼠呼吸机参数调节

06:32

Graphpad横纵坐标组名显示不全 or 不清

02:37

【科研小技巧2】如何统一修改文章 中英文字体

01:42

【科研小技巧1 】Pubmed.pro:直接翻译

00:58

【研途指南】如何分辨投稿杂志是否为北大核心?简易

02:48

【研途指南】Elisa 结果处理计算

07:36

[文献下载] 一次搞定所有英文文献下载

07:04

Image J测量(westernblot)WB

03:34

样本量太多如何在Graphpad Prism中输

04:04

临近毕业,如何在知网下载PDF格式毕业论文,避免

03:41

研途指南:科研图片溯源

03:50

研途指南:影响因子插件一次搞定

03:13

GraphPad Prism柱状图纵轴/Y轴如何截断 or 断层

03:43

研途指南:查重/毕业论文查重/英文投稿查重/中文投稿查重

04:48

最强插件 有了油猴万事不愁 毕业论文PDF下载、百度文库复制下载等诸多实用功能

05:07

为何没有Error bar?

01:13

Graphpad prism作图如何添加虚线参考线

03:14

control组数据为0,如何展示数据

01:46

研途指南:大鼠缺血再灌注/心肌梗死结扎点定位修正版

04:52

多条线图制作及统计分析说明

01:42

如何导入一篇文献的参考文献

09:04

Graphpadprism作图,如何修改轴坐标数字格式 百分号( % ) 10的幂次方 科学计数法 对数 自定义等

03:43

研途指南:科研绘图 SCI绘图不过如此

14:02

新手必备科研网站:一体化实验技术 专业生物医学教材 国自然结题标书下载 文献检索

11:28

保存实验数据的几点建议

02:57

分组柱状图组名不对如何修改

00:50

研途指南:Pubmed如何精准作者检索

08:07

研途指南:投稿“黑名单”期刊最全汇总

01:02

研途指南:TTC染色技巧总结

11:32

研途指南:为什么SPSS和Graphpadprism算的P值不一样?究竟选择哪一个?

02:12

研途指南:细胞缺氧复氧(H/R)模型的建立 Hypoxia / reoxygenation model

06:27

如何查询你所研究领域所有SCI期刊及排名

04:23

SCI写作有它就够了 自动续写、科研绘图、文本润色、智能翻译统统搞定

08:18

如何查询发表相关研究最多的SCI期刊 快速定位投稿期刊

03:07

如何把Control组数值设为1,数值均一化

03:40

研途指南:投稿选刊

05:00

读文献原来可以如此轻松,智能Ai快速精读文献

08:34

研途指南:国自然标书下载、Paper写作及润色一体化,科研绘图、实验教程、ChatGPT、智能翻译...最强科研网站不为过

08:28

中文文献如何插入doi?

01:49

研途指南:速查期刊 一目了然 收藏 (JCR分区 中科院分区 历年影响因子 期刊预警 总体审稿时间 录用到见刊时间 版面费)

03:30

研途指南:Photoshop(PS)处理Western blot(WB)条带及组图,新手必备stupidman1

32.2万

329

研途指南:ImageJ 测量western blot(WB)条带灰度值stupidman1

34.4万

219

研途指南:Graphpad Prism数据量化作图及统计分析实操,柱状图(column)-分组柱状图(grouped)-线图(XY),新手入门指南stupidman1

91.4万

1729

【WB结果处理】WB蛋白条带处理及数据量化(western blot),Image J分析WB条带图,WB柱状图作图,附表格模板福州载基生物

5002

50

PS裁剪WB条带及描边3Dslicer_ealge

4107

0

WB数据graphpad prim可视化绘图,比值归一,单独指标和多指标联合图1020mylove

1.7万

10

用AI处理Western blot条带组图蔡伦路当机时间

2011

0

Western blot(WB)条带灰度值分析【ImageJ】灰灰菜Freya

1.0万

5

western blot蛋白条带数据量化组图背景处理课程简介科研小站NO1

2.0万

1

科研绘图教程—AI工具—处理WB教程会点儿医学插画的辛文

2690

1

Western Blot 归一化方法介绍深蓝云生物科技

6612

7

[实验室视频熟手]WB实验条带Image Lab软件处理方法(总蛋白定量)叶君陵

5557

0

WB图片处理VBUCCV

6026

1

傻瓜小白教程,WB条带做出来了,怎样进行拼接及灰度值测量及数据归总刚想起来作业还没做

2140

0

如何获得背景干净的Western blot条带图暮夏钟鼓

2697

0

WB条带用ImageJ三种不同方法量化1020mylove

4486

0

论文组图方法小魔鬼大魔王

2.7万

14

WB条带怎么看?实验小助理

6552

0

wb组化排版进阶heart将就

235

0

wb数据处理分析 第二期医药生物科研助手

417

0

展开

小窗

客服

顶部

赛事库 课堂 2021

蛋白质印迹(Western blot)实验方案| Abcam中文官网

蛋白质印迹(Western blot)实验方案| Abcam中文官网

Your browser does not have JavaScript enabled and some parts of this website will not work without it.

为了使您在Abcam官网的浏览体验更顺畅,请使用最新版本的浏览器比如 Google Chrome

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

Maybe later

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

We haven't added this to the BETA yet

New BETA website

New BETA website

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look at our BETA site and see what we’ve done so far.

Switch on our new BETA site

Now available

Search and browse selected products

A selection of primary antibodies

Purchase these through your usual distributor

In the coming months

Additional product types

Supporting content

Sign in to your account

Purchase online

致电 +86 21 2070 0500 或 联系我们

我的账户

退出

登录

注册

欢迎光临

登录

您还没有帐户?

注册

我的购物篮

快速订购

Abcam homepage

研究用途的产品

按产品类型

一抗

二抗

免疫测定试剂盒与试剂

细胞与组织成像工具

细胞与生化测定

按产品类型

蛋白质与肽

蛋白质组学工具

激动剂、活化剂、拮抗剂与抑制剂

细胞株和裂解液

多因子分析试剂盒

按研究领域

癌症

心血管

细胞生物学

表观遗传学

代谢

发育生物学

按研究领域

免疫学

微生物学

神经科学

信号转导

干细胞

定制化产品 & 合作关系

定制化产品 & 合作关系

定制化产品和商务合作加速您的诊断和治疗项目

定制化产品

与我们成为伙伴

技术支持

支持中心

获取研究建议和支持

查看支持中心

Protocols

一步一步完成您的实验

查看Protocols

活动通知

会议年历

肿瘤研究

心血管研究

染色质及细胞核信号转导研究

免疫学

神经生物学

干细胞研究

商品展览

实验技术视频

查看最新活动

活动说明、摘要提交、演讲者、注册方式及更多信息

查看全球活动安排

通路

细胞信号转导通路

查看所有通路

查看交叉通路

蛋白质印迹(Western blot)实验方案

Related

Western blot 资源

缓冲液与储备液

推荐对照

Western blot 样本制备

转膜与染色

剥膜

疑难解答提示

用于 western blot 的一抗

用于 western blot 的内参对照

β-肌动蛋白抗体 (ab8227) 内参对照

重组抗体 —— 优点

用于 western blot 的二抗

Anti-Rabbit IgG (HRP) (ab205718)

Anti-Mouse IgG (HRP) (ab205719)

IRDye® 二抗

用于 western blot 的一抗

查找合适的 HRP 二抗

荧光 WB 指南

Western blot 培训

我们的 western blot 实验方案包含溶液、试剂、检测步骤和有用的链接,可指导您完成整个实验。2020 年 12 月 14 日审核Western blot 是一项通过凝胶电泳按照分子量大小分离蛋白,然后再利用特异性抗体识别这些蛋白的技术。免疫检测通常使用由硝酸纤维素或 PVDF(聚偏二氟乙烯)制成的膜。将凝胶紧贴膜放置,蛋白在电流作用下从凝胶迁移到膜上。然后利用目标靶点特异性抗体对膜做进一步处理,再通过二抗和检测试剂让膜显色。目录溶液与试剂:裂解缓冲液溶液与试剂:电泳、转膜及封闭缓冲液样本裂解样本制备上样和跑胶蛋白转膜抗体染色相关链接网络研讨会记录查看下方的 western blot 实验方案视频。

查看更多实验方案视频,请单击访问我们的方案视频库。>> 打印完整的 western blot 实验方案>> 查看我们的 western blot 实验方案图如需提升 western blot 分析技能,请查看我们的免费 western blot 培训(可点播)。

溶液与试剂:裂解缓冲液这些缓冲液在 4 ℃ 下可保存数周,也可分装后在 -20 ℃ 下保存长达 1 年。NP-40 缓冲液150 mM 氯化钠1.0% NP-40(可用 0.1% Triton X-100 代替)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂RIPA 缓冲液(放射免疫沉淀检测缓冲液)150 mM 氯化钠1% IGEPAL CA-6300.5% 脱氧胆酸钠0.1% SDS(十二烷基硫酸钠)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂Tris-HCl20 mM Tris-HCl(三羟甲基氨基甲烷盐酸盐)蛋白酶抑制剂

溶液与试剂:电泳、转膜及封闭缓冲液

Laemmli 2X缓冲液/上样缓冲液4% SDS10% 2-巯基乙醇20% 甘油0.004% 溴酚蓝0.125 M Tris-HCl测定 pH 值并将 pH 值调整至 6.8电泳缓冲液(Tris-Glycine/SDS)25mM Tris base(三羟甲基氨基甲烷游离碱)190mM 甘氨酸0.1% SDS测定 pH 值并将 pH 值调整至 8.3转膜缓冲液(湿转)25mM Tris base (三羟甲基氨基甲烷游离碱)190mM 甘氨酸20% 甲醇测定 pH 值并将 pH 值调整至 8.3对于大于 80 kDa 的蛋白,建议 SDS 终浓度为 0.1%。转膜缓冲液(半干转)48mM Tris base39mM 甘氨酸20% 甲醇0.04% SDS封闭缓冲液3–5% 牛奶或 BSA(牛血清白蛋白)加入 TBST 缓冲液。充分混合后过滤。不过滤可能会有斑点沉积,这种小暗点会在显色时影响实验结果。

样本裂解细胞培养裂解液的制备将细胞培养皿放置冰上并用冰冷的 PBS 洗涤细胞。吸出 PBS,然后加入冰冷的裂解缓冲液(每 107 个细胞/100 mm 培养皿/150 cm2 烧瓶加 1 mL;每 5x106 个细胞/60 mm 培养皿/75 cm2 烧瓶加 0.5 mL)。用预冷的塑料细胞刮刀将贴壁细胞从培养皿上刮下,然后轻轻将细胞悬液转移到预冷的小离心管中。或者,用胰蛋白酶消化细胞并用 PBS 洗涤细胞,然后将细胞重悬浮于小离心管内的裂解缓冲液中。4℃ 下持续振摇 30 分钟。放入微型离心机,在 4°C 下离心。您可能需要根据细胞类型改变离心力和离心时间;指南给出的参考标准是在 12,000 rpm 转速下离心 20 分钟,但须根据您的实验确定(白细胞所需的离心力很小)。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。组织裂解液的制备3.1 用干净器械解剖目标组织,最好在冰上,并且越快越好以防蛋白酶降解。将组织放入圆底离心管或 Eppendorf 管中,浸入液氮中“速冻”。样本在 -80°C 储存备用,或放在冰上立即匀浆。对于一块约 5 mg 的组织,向管中迅速加入约 300 μL 裂解液,并用电动匀浆器匀浆,2X 裂解液冲洗刀片两次,每次 200 μL,然后在 4℃ 下(例如将回旋振荡器放入冰箱)持续振摇 2 小时。裂解液的体积必须根据组织总量决定;蛋白提取物不宜过稀释,以免造成蛋白损失,并尽量减少样本体积,以便凝胶上样。最小浓度为 0.1 mg/mL,最佳浓度为 1-5 mg/mL。在微型离心机中 4℃ 下按照 12,000 rpm 的转速离心 20 分钟。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。样本制备取少量裂解液,用于蛋白质定量分析。测定每种细胞裂解液的蛋白质浓度。确定蛋白质的上样量,并添加等体积的 2X 稀释 Laemmli 样本缓冲液。我们建议使用以下方法对样本进行还原和变性,除非在线抗体数据表显示应使用非还原和非变性条件。对样本进行还原和变性时,将样本缓冲液中的细胞裂解液在 100°C 下煮沸 5 分钟。裂解液可等量分装并在 -20°C 下储存备用。上样和跑胶3.1  将等量的蛋白和分子量标志物上样至 SDS-PAGE 凝胶孔中。细胞裂解液或组织匀浆的总蛋白上样量为 20-30 μg,纯化蛋白的上样量为 10-100 ng。3.2  在 100 V 下跑胶 1-2 小时。时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。建议使用还原型凝胶,除非抗体数据表推荐使用非还原性条件。凝胶百分比取决于目标蛋白的大小:蛋白大小凝胶百分比4–40 kDa20%12–45 kDa15%10-70 kDa12.5%15-100 kDa10%25-100 kDa8%也可以使用梯度凝胶。蛋白从凝胶转移到膜膜可以是硝酸纤维素,也可以是 PVDF。用甲醇活化 PVDF 1 分钟,并在制备转膜层之前用转膜缓冲液冲洗 PVDF。转膜时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。可在封闭步骤之前用丽春红染色法检查蛋白质转膜。转膜层的制备如下:

图 1.制备好的转膜层示例。

​抗体染色

用封闭缓冲液在室温下封闭膜 1 小时或在 4°C 下封闭过夜。用适当稀释的一抗在封闭缓冲液中孵育膜。我们建议在 4°C 下过夜孵育;其他条件可以优化。用 TBST 洗涤膜 3 次,每次 5 分钟。用推荐稀释度的偶联二抗在封闭缓冲液中室温孵育膜 1 小时。用 TBST 洗涤膜 3 次,每次 5 分钟。产生信号时,请遵循试剂盒生产商的建议。除去多余的试剂,并用透明塑料膜覆盖膜。利用暗室显影技术采集化学发光图像,或利用常规图像扫描法采集比色检测图像。

相关链接

查看更多 western blot 实验方案查看所有 Abcam 内参对照。示例内参对照:ab8227 beta actin

所有泳道:beta Actin 抗体 - 内参对照 (ab8227),稀释度为 1/5000泳道 1:HeLa 全细胞提取物泳道 2:酵母细胞提取物泳道 3:小鼠脑组织裂解液查看我们可提供的阳性对照裂解液、封闭肽和阳性对照蛋白清单。查看蛋白质印迹中表现出色的 AbExcel 二抗。观看我们简单易懂的实验方案视频。实验方案由 Abcam 根据 Abcam 实验室使用 Abcam 试剂和产品开展的实验“按原样”提供;在其他条件下使用实验方案得出的结果可能会有所不同。网络研讨会记录Western blot 的目的在于按照分子量大小在凝胶上分离蛋白。然后将蛋白转移到膜上,从而使用抗体对蛋白进行检测。在含有还原剂(如 β-巯基乙醇)的样本缓冲液中,95 ℃ 下加热样本 5 到 10 分钟。这样可以让线性化蛋白带上与其大小成正比的负电荷。将凝胶放入电泳槽中并加入缓冲液,确保孔的顶部被缓冲液覆盖。所用凝胶的丙烯酰胺百分比取决于靶蛋白的分子量。将分子量标志物上样至第一泳道,然后将样本上样至相邻的孔中。所有样本均含有等量蛋白。所有样本完成上样后,添加电泳缓冲液,给电泳槽盖上盖子。打开电源,按照制造商的推荐设置凝胶槽中凝胶的电压。这时应该能够看到凝胶槽中有上升的气泡。跑胶,直到染料前沿充分移动至凝胶。下一阶段是将蛋白从凝胶转移到膜。膜通常由硝化纤维或 PVDF 制成。从凝胶槽中取出凝胶,并小心地将它从塑料盒中释放。切断孔和凝胶脚,并将凝胶放入转膜缓冲液中。将膜和凝胶夹在滤纸和海绵之间,制备转膜层。膜应靠近正极,凝胶应靠近负极。使用小滚筒去除凝胶和膜之间的气泡。夹住关闭的转膜箱,并将它浸入含有转膜缓冲液的转膜槽中。向外室加水,以保持系统冷却,并盖上盖子。打开电源,开始转移蛋白。时间和电压需要优化,请查看制造商的说明。现在蛋白已经从凝胶转移到硝酸纤维素膜上了,可以用抗体检测目标蛋白了。膜可以从盒中取出,现在应该可以看到分子量标志物了。如有需要,可以用丽春红 S 溶液对膜进行染色,从而确认蛋白质的转移。为了防止抗体发生非特异性结合,需要封闭膜。将封闭缓冲液倒在膜上,并置于摇床上轻轻摇动。通常情况下,需要使用 5% 牛奶或牛血清白蛋白(BSA)溶液在室温下孵育两小时或 4℃ 下孵育过夜。应优化封闭缓冲液的时间和类型,请查看您打算使用的一抗的数据表,了解详细信息。膜封闭后,去除封闭缓冲液,在同一溶液中加入稀释的一抗。与之前一样,置于摇床上孵育。通常会在室温下孵育一抗 1 小时或 4℃ 下孵育过夜。抗体浓度和孵育时间需要优化。如需任何指导,请查阅抗体数据表。倒出一抗,用洗涤缓冲液冲洗膜两次。随后在摇床洗涤膜 1 次,时长 15 分钟,再洗涤膜 3 次,每次 10 分钟。洗涤缓冲液通常是含 0.1% 吐温 20 的 Tris 缓冲盐溶液(TBS)或磷酸盐缓冲盐溶液(PBS)。倒掉洗涤缓冲液,在偶联二抗中孵育膜,二抗需先在封闭缓冲液中稀释。通常要在室温下孵育一小时,但抗体浓度和孵育时间需要优化。倒掉二抗,并按照上述步骤清洗膜。有几种不同的检测系统。如果二抗与酶偶联,则成像前,应在合适的底物中孵育膜。如果二抗是荧光偶联二抗,可以直接进入成像步骤。成像时使用 X 射线胶片或数字成像系统。将膜放入成像托盘中。将成像托盘放入成像系统。为了清楚地检测与目标蛋白相关的条带,可能需要优化曝光时间。

通过邮件收到学术资源和促销信息

注册

研究类别(A-Z)

肿瘤研究

心血管研究

细胞生物学

发育生物学

染色质及细胞核信号转导研究

免疫学

代谢

微生物学

神经生物学

信号转导研究

干细胞研究

产品种类(A-Z)

一抗

二抗

生化试剂

亚类对照

流式细胞仪多色选择器

试剂盒

内参对照

细胞裂解液

多肽

蛋白酶

组织切片

蛋白标签及细胞标记物

相关试剂及工具

帮助与支持

技术支持

技术FAQ

实验步骤与建议

购买FAQ

RabMAb 产品

培训课程

按靶标浏览

企业

企业资讯

投资者关系

公司新闻

招贤纳士

关于我们

活动通知

商品展览

会议

全球网站

abcam.com

abcam.co.jp

微信扫码 关注我们

沪ICP备14046373号-1

沪公网安备 31011502007413号

销售条款

网站使用条款

Cookie政策

隐私权政策

法律

© 1998-2024 艾博抗(上海)贸易有限公司版权所有

WB实验疑难解答,及58个热门靶点WB相关关键点解析 | Abcam

WB实验疑难解答,及58个热门靶点WB相关关键点解析 | Abcam

Your browser does not have JavaScript enabled and some parts of this website will not work without it.

为了使您在Abcam官网的浏览体验更顺畅,请使用最新版本的浏览器比如 Google Chrome

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

Maybe later

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look

We haven't added this to the BETA yet

New BETA website

New BETA website

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look at our BETA site and see what we’ve done so far.

Switch on our new BETA site

Now available

Search and browse selected products

A selection of primary antibodies

Purchase these through your usual distributor

In the coming months

Additional product types

Supporting content

Sign in to your account

Purchase online

致电 +86 21 2070 0500 或 联系我们

我的账户

退出

登录

注册

欢迎光临

登录

您还没有帐户?

注册

我的购物篮

快速订购

Abcam homepage

研究用途的产品

按产品类型

一抗

二抗

免疫测定试剂盒与试剂

细胞与组织成像工具

细胞与生化测定

按产品类型

蛋白质与肽

蛋白质组学工具

激动剂、活化剂、拮抗剂与抑制剂

细胞株和裂解液

多因子分析试剂盒

按研究领域

癌症

心血管

细胞生物学

表观遗传学

代谢

发育生物学

按研究领域

免疫学

微生物学

神经科学

信号转导

干细胞

定制化产品 & 合作关系

定制化产品 & 合作关系

定制化产品和商务合作加速您的诊断和治疗项目

定制化产品

与我们成为伙伴

技术支持

支持中心

获取研究建议和支持

查看支持中心

Protocols

一步一步完成您的实验

查看Protocols

活动通知

会议年历

肿瘤研究

心血管研究

染色质及细胞核信号转导研究

免疫学

神经生物学

干细胞研究

商品展览

实验技术视频

查看最新活动

活动说明、摘要提交、演讲者、注册方式及更多信息

查看全球活动安排

通路

细胞信号转导通路

查看所有通路

查看交叉通路

WB实验疑难解答,及58个热门靶点WB相关关键点解析

Related

热门靶点及应用解析

蛋白质印迹(Western blot)疑难解答和建议

您可点击此处下载蛋白质免疫印迹应用指南PDF文件目录:WB实验方案溶液与试剂:裂解缓冲液溶液与试剂:电泳、转膜及封闭缓冲液样本裂解样本制备上样和跑胶蛋白转膜抗体染色WB实验疑难解答无信号或信号弱检测条带与预期大小不符或多带现象高背景其他问题

WB实验方案

溶液与试剂:裂解缓冲液这些缓冲液在 4 ℃ 下可保存数周,也可分装后在 -20 ℃ 下保存长达 1 年。NP-40 缓冲液RIPA 缓冲液(放射免疫沉淀检测缓冲液)Tris-HCl1 × Hot Lysis裂解缓冲液150 mM 氯化钠1.0% NP-40(可用 0.1% Triton X-100 代替)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂150 mM 氯化钠1% IGEPAL CA-6300.5% 脱氧胆酸钠0.1% SDS(十二烷基硫酸钠)50 mM Tris-HCl,pH 8.0蛋白酶抑制剂20 mM Tris-HCl(三羟甲基氨基甲烷盐酸盐)蛋白酶抑制剂10 mM Tris-HCL(pH 8)1% SDS1.0 mM 正钒酸钠ddH2O溶液与试剂:电泳、转膜及封闭缓冲液Laemmli 2X缓冲液/上样缓冲液电泳缓冲液(Tris-Glycine/SDS)转膜缓冲液(湿转)转膜缓冲液(半干转)封闭缓冲液4% SDS10% 2-巯基乙醇20% 甘油0.004% 溴酚蓝0.125 M Tris-HCl测定 pH 值并将 pH 值调整至 6.825 mM Tris base(三羟甲基氨基甲烷游离碱)190 mM 甘氨酸0.1% SDS测定 pH 值并将 pH 值调整至 8.325 mM Tris base (三羟甲基氨基甲烷游离碱)190 mM 甘氨酸20% 甲醇测定 pH 值并将 pH 值调整至 8.3对于大于 80 kDa 的蛋白,建议 SDS 终浓度为 0.1%。48 mM Tris base39 mM 甘氨酸20% 甲醇0.04% SDS3–5% 牛奶或 BSA(牛血清白蛋白)加入 TBST 缓冲液。充分混合后过滤。不过滤可能会有斑点沉积,这种小暗点会在显色时影响实验结果。样本裂解细胞培养裂解液的制备组织裂解液的制备将细胞培养皿放置冰上并用预冷的 PBS 洗涤细胞。吸出 PBS,然后加入预冷的裂解缓冲液(每 107 个细胞/100 mm 培养皿/150 cm2 烧瓶加 1 mL;每 5x106 个细胞/60 mm 培养皿/75 cm2 烧瓶加 0.5 mL)。用预冷的塑料细胞刮刀将贴壁细胞从培养皿上刮下,然后轻轻将细胞悬液转移到预冷的小离心管中。或者,用胰蛋白酶消化细胞并用 PBS 洗涤细胞,然后将细胞重悬浮于小离心管内的裂解缓冲液中。4 ℃ 下持续振摇 30 分钟。放入微型离心机,在 4 °C 下离心。您可能需要根据细胞类型改变离心力和离心时间;指南给出的参考标准是在 12,000 rpm 转速下离心 20 分钟,但须根据您的实验确定(白细胞所需的离心力很小)。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。用干净器械解剖目标组织,最好在冰上,并且越快越好以防蛋白酶降解。将组织放入圆底离心管或 Eppendorf 管中,浸入液氮中“速冻”。样本在 -80 °C 储存备用,或放在冰上立即匀浆。对于一块约 5 mg 的组织,向管中迅速加入约 300 μL 裂解液,并用电动匀浆器匀浆,2X 裂解液冲洗刀片两次,每次 200 μL,然后在 4 ℃ 下(例如将回旋振荡器放入冰箱)持续振摇 2 小时。裂解液的体积必须根据组织总量决定;蛋白提取物不宜过度稀释,以免造成蛋白损失,并尽量减少样本体积,以便凝胶上样。最小浓度为 0.1 mg/mL,最佳浓度为 1-5 mg/mL。在微型离心机中 4 ℃ 下按照 12,000 rpm 的转速离心 20 分钟。轻轻地从离心机中取出离心管放置在冰上。将上清液吸出转移到放置在冰上预冷的新管中,弃去沉淀。样本制备取少量裂解液,用于蛋白质定量分析。测定每种细胞裂解液的蛋白质浓度。确定蛋白质的上样量,并添加等体积的 2X 稀释 Laemmli 样本缓冲液。我们建议使用以下方法对样本进行还原和变性,除非在线抗体数据表显示应使用非还原和非变性条件。对样本进行还原和变性时,将样本缓冲液中的细胞裂解液在 100 °C 下煮沸 5 分钟。裂解液可等量分装并在 -20 °C 下储存备用。上样和跑胶1. 将等量的蛋白和分子量标志物上样至 SDS-PAGE 凝胶孔中。细胞裂解液或组织匀浆的总蛋白上样量为 20-30 μg,纯化蛋白的上样量为 10-100 ng。2. 在 100 V 下跑胶 1-2 小时。时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。建议使用还原型凝胶,除非抗体数据表推荐使用非还原性条件。凝胶百分比取决 于目标蛋白的大小:蛋白大小凝胶百分比4–40 kDa20%12–45 kDa15%10-70 kDa12.5%15-100 kDa10%25-100 kDa8%也可以使用梯度凝胶。蛋白从凝胶转移到膜膜可以是硝酸纤维素,也可以是 PVDF。用甲醇活化 PVDF 1 分钟,并在制备转膜层之前用转膜缓冲液冲洗 PVDF。转膜时间和电压可能需要优化。我们推荐按照制造商的说明进行操作。可在封闭步骤之前用丽春红染色法检查蛋白质转膜。转膜层的制备如下:

图 1.制备好的转膜层示例。

抗体染色用封闭缓冲液在室温下封闭膜 1 小时或在 4 °C 下封闭过夜。用适当稀释的一抗在封闭缓冲液中孵育膜。我们建议在 4  °C 下过夜孵育;其他条件可以优化。用 TBST 洗涤膜 3 次,每次 5 分钟。用推荐稀释度的偶联二抗在封闭缓冲液中室温孵育膜 1 小时。用 TBST 洗涤膜 3 次,每次 5 分钟。产生信号时,请遵循试剂盒生产商的建议。除去多余的试剂,并用透明塑料膜覆盖膜。利用暗室显影技术采集化学发光图像,或利用常规图像扫描法采集比色检测图像。WB 实验疑难解答无信号或信号弱实验流程原因建议相关靶点靶点特性组织或细胞中靶标蛋白含量低参考文献或数据库数据等,确认靶标蛋白是否在待检组织或细胞中表达。附录1增加上样量,至少上样20-30 μg蛋白。浓缩使信号最大化(例如检测核蛋白要用核裂解物;检测膜蛋白用膜裂解液,超速离心分离膜蛋白,注意带上特定组分的loading control)。附录2参考文献或产品说明书,诱导增加靶标蛋白表达。附录3选择确认表达靶标蛋白的样本作为阳性对照(可参考产品说明书中提供的阳性对照)。组织或细胞中修饰后(磷酸化、乙酰化和泛素化等)的靶标蛋白含量低通常情况下,在未处理的组织或细胞中,大部分翻译后修饰状态下的蛋白含量较少。参考文献或产品说明书,诱导增加靶标蛋白含量。附录3裂解缓冲液中使用相应去修饰酶抑制剂。(例如靶蛋白磷酸化检测,裂解液中需增加磷酸酶抑制剂)阳性对照(参考产品说明书中诱导试剂和条件,处理样本。)分泌型蛋白使用 Brefeldin A(BFA)抑制蛋白分泌,提取全细胞裂解液。如果全细胞裂解液中检测不到靶蛋白,建议提取细胞培养上清中的蛋白。样本制备裂解不充分超声破碎有利于蛋白释放,建议所有样本制备时,加入裂解液后都使用超声破碎裂解样本,特别是核蛋白。附录2转膜转膜不充分使用可逆染色剂例如丽春红检测转膜效果。PVDF 膜使用前,需预先浸在甲醇中,然后浸到转移缓冲液中。检查转膜操作是否正确。小蛋白和大蛋白需注意PVDF膜孔径、转膜试剂和转膜时间等是否合适。附录4封闭封闭剂与一抗或二抗有交叉反应使用温和的去污剂如吐温-20,或更换封闭剂(常用的脱脂奶粉、BSA、血清等)。过度封闭使目标蛋白不能显色代替 5% 脱脂奶粉,使用含 0.5% 脱脂奶粉或无脱脂奶粉的抗体稀释液,或更换封闭剂(例如5% BSA),减少封闭时间。一抗孵育一抗不识别检测物种的蛋白参照说明书,比对免疫原序列和蛋白序列以确保抗体和目的蛋白会发生反应,设置阳性对照。有些蛋白缩写名称相似或相同,参照说明书,确认抗体识别的靶标蛋白。没有足够的一抗或二抗结合目标蛋白使用高浓度抗体,延长 4 ℃ 孵育时间(如过夜)。一抗反应性和敏感性限制靶标蛋白种属是否在产品说明书列出的种属范围内。抗体检测的样本是否指出仅检测recombinant fragment,若是则表明其不能检测内源样本。一抗失效使用新鲜稀释的抗体,重复使用有效浓度和稳定性会降低。二抗孵育一抗和二抗不匹配二抗需和一抗宿主的物种相同(如一抗来自兔,二抗为抗兔抗体)。二抗受叠氮钠抑制避免叠氮钠和 HRP 标记抗体一起使用。洗膜洗膜过度勿过度洗膜。检测检测试剂盒过期和底物失活使用新鲜的底物。

检测条带大小与预期不符或多带现象实验流程原因建议相关靶点样本和靶标蛋白细胞传代次数过多,使其蛋白表达不同使用原始未传代的细胞株,和现在的细胞株一起做平行对照实验。蛋白样本降解(蛋白质分子量降低)在样品缓冲液中加入足够的蛋白酶抑制剂。体内表达的蛋白样本具有多种修饰形式如乙酰化、甲基化、烷基化、磷酸化、糖基化等查阅文献,检查是否有多带报道。附录5由于翻译后修饰(PTMs),如磷酸化和糖基化或选择性剪接变异体,许多蛋白质显示的条带分子量略高于预期或出现弥散条带附录6为了确认额外的条带是由翻译后修饰引起的,可以用合适的试剂处理样品来处理修饰过的蛋白质。 例如,PNGase F可以去除糖基化, 当处理后再进行WB实验时,额外的糖基化条带应该会消失。附录6靶标蛋白含有多个异构体查阅资料,看看是否有异构体。附录4查看免疫原序列,判断抗体是否识别异构体或者剪切体。检测到未经报道过的新蛋白或同一蛋白家族中具有相似表位而结构不同的蛋白查阅其它文献报道,或 BLAST 搜寻,使用说明书推荐的细胞株或组织。样本制备靶蛋白形成多聚体这可能出现高分子量的额外条带,它们的分子量可能是预期条带的2倍或3倍。附录6SDS-PAGE 电泳上样前,煮沸 10 分钟而不是 5 分钟,使蛋白质解聚。对于多次跨膜蛋白,可尝试不煮样或使用较温和的煮样方式。附录2封闭条带为非特异性条带应用封闭多肽来区分特异性和非特异性条带,只有特异性条带能被封闭从而消失。一抗孵育一抗浓度过高,高浓度时常出现多条蛋白带降低抗体浓度和/或孵育时间。抗体未经纯化使用亲和纯化的抗体,减少非特异条带。二抗孵育二抗浓度过高,高浓度产生非特异性结合降低抗体浓度,增加二抗对照(只加二抗不加一抗的对照)。高背景实验流程原因建议转膜膜的选择导致的高背景NC 膜比 PVDF 膜背景低。封闭未进行非特异性封闭或封闭不充分延长封闭时间,考虑更换合适的封闭剂。Abcam 推荐 5% 脱脂奶粉、3% BSA 或血清封闭 30 分钟。这些可以包含在抗体缓冲液中。一抗孵育一抗浓度过高稀释抗体至合适浓度,以更高稀释度抗体孵育更长时间(耗时长但特异性结合最好)。孵育温度过高4 °C 孵育。二抗孵育二抗与封闭剂非特异性结合或反应设置二抗对照(不加一抗)。一抗或二抗与封闭剂有交叉反应在孵育和洗涤液中加入温和去污剂如吐温 -20。脱脂奶粉含有酪蛋白,对于酪蛋白激酶,该蛋白本身就是一种磷酸化蛋白底物,有可能会结合磷酸化特异性抗体而易产生高背景。使用 BSA 代替奶粉作为封闭剂。膜膜干燥在孵育过程中防止膜变干,在任何步骤都保证膜有充分的反应液,放入搅拌子不断搅动或轻轻振荡使膜浸在溶液中,避免出现干膜现象。洗膜未结合蛋白质洗涤不充分增加洗涤次数。丽春红自发荧光如果使用荧光检测,一定要在免疫染色前完全去除丽春红,因为它可以自发荧光。  检测底物过多(如果使用酶联抗体)。稀释底物,缩短底物孵育时间。  信号放大可能太高(如果使用信号放大技术)减少信号扩增的倍数(例如,如果使用生物素化,将较少的生物素结合到二抗)。其他问题问题分类实验流程原因建议背景有不均匀的白色斑点转膜转膜时膜上有气泡或抗体在膜上分布不均转膜过程中尽量去除气泡,抗体孵育时保持摇动。背景有黑色斑点封闭抗体结合了封闭剂过滤封闭剂。深背景出现白色条带(非预期背景)抗体孵育一抗或二抗加入过多稀释抗体的浓度。分子量蛋白标准条带呈黑色电泳抗体和分子量蛋白标准发生了反应在分子量蛋白标准和第一个样品之间增加一个空白条带。目的条带染色过低/过高电泳分离不彻底改变凝胶比例:分子量大的蛋白用低浓度胶,分子量小的蛋白用高浓度胶。“微笑”条带电泳迁移过快降低电泳电压,以降低迁移速度电泳温度过高(改变了 pH 值和迁移速度)低温电泳(冷库或冰上)。相同的蛋白杂交出现大小不均匀条带电泳制备凝胶时凝胶凝固太快,致使泳道中丙烯酰胺的比例不均匀参照凝胶的配方,在凝胶中加入适量 TEMED,放置时在凝胶顶部加入适量 0.1% SDS(水稀释)以防凝胶变干。凝胶染色不均匀试剂和抗体细菌污染4 °C 保存抗体并使用新鲜的缓冲液浸泡凝胶。抗体量不足确保在振荡孵育时抗体充分浸没膜。

通过邮件收到学术资源和促销信息

注册

研究类别(A-Z)

肿瘤研究

心血管研究

细胞生物学

发育生物学

染色质及细胞核信号转导研究

免疫学

代谢

微生物学

神经生物学

信号转导研究

干细胞研究

产品种类(A-Z)

一抗

二抗

生化试剂

亚类对照

流式细胞仪多色选择器

试剂盒

内参对照

细胞裂解液

多肽

蛋白酶

组织切片

蛋白标签及细胞标记物

相关试剂及工具

帮助与支持

技术支持

技术FAQ

实验步骤与建议

购买FAQ

RabMAb 产品

培训课程

按靶标浏览

企业

企业资讯

投资者关系

公司新闻

招贤纳士

关于我们

活动通知

商品展览

会议

全球网站

abcam.com

abcam.co.jp

微信扫码 关注我们

沪ICP备14046373号-1

沪公网安备 31011502007413号

销售条款

网站使用条款

Cookie政策

隐私权政策

法律

© 1998-2024 艾博抗(上海)贸易有限公司版权所有

解读文献里的那些图——Western blot - 知乎

解读文献里的那些图——Western blot - 知乎切换模式写文章登录/注册解读文献里的那些图——Western blot一起实验网Western Blot,也就是我们通常所说的“WB”,中文名称是“蛋白印迹”或“免疫印迹”,其核心本质是抗原抗体的特异性反应。Western Blot的基本原理是蛋白质通过凝胶电泳后,按分子量大小顺序在分离胶中分离开来,通过转膜可将胶上蛋白质转移到固相载体(通常是PVDF膜、NC膜和尼龙膜)表面,然后加入一抗去特异性结合膜上蛋白质,再加入酶或者荧光素标记的二抗,二抗与一抗结合反应后,通过底物显色、化学发光等方法检测目的蛋白。Western Blot实验一般用来判断特定蛋白在样本中是否表达及粗略分析特定蛋白表达量的高低。那文献中出现的WB结果图应该怎么理解呢?读图之前,我们先理解两个概念:1.内参(Loading control):即内部参照,WB必须控制上样量以确保目标蛋白变化具有可比性,但是人工上样必定会有微小的误差,对于蛋白表达量少的样品,微小的差异可能会产生较大的误差,内参的存在可校正蛋白样品定量以及上样过程中的误差,保证实验结果的准确性,此外内参也可以作为空白对照,检测WB过程中蛋白转膜是否完全以及发光显色体系是否正常。通常选择在所有组织中普遍分布的具有相对恒定量的蛋白质作为内参,常用的有β-Actin与GAPDH。内参的选择也是一门学问,选对了内参,实验也成功了一半。2.灰度值:说白了就是看这个条带有多黑,因为跑出来的WB条带只有一种颜色,可以给我们提供的信息也只有黑色的深浅,所以这是我们分析条带的关键。条带越黑说明目的蛋白越多,但是我们不能只通过观察条带的深浅来判断实验处理对蛋白表达造成了什么影响,这种判断是存在误差的,误差来源于我们上样的时候并不能保证每个加样孔的上样量都一样,这时候就需要对western blot的结果条带的灰度值进行计算并做统计分析——目的蛋白的灰度值除以内参的灰度值,以校正误差,所得结果代表某样品的目的蛋白相对含量,这样得到的结果才更加准确、更有说服力。常用的灰度值分析软件有Image J、QuantityOne、Bandscan、Gel-ProAnalyzer、TanonImage等。了解的这两个概念,WB结果图表达的意义一目了然,如图:肉眼分析可得,p-Vav1蛋白的表达量对照组(control)要低于糖尿病组(diabetes),因为对照组条带较淡,右侧的柱状图——灰度值统计分析也印证了我们的初步猜想,其蛋白含量的差异具有统计学意义。Vav2、Vav3条带的对比相对来说没有那么明显,灰度值统计分析后显示无差异。原文转载自:医学僧的科研日记(ID:zzudoctor)发布于 2022-06-07 14:07生信分析wb实验生物信息学​赞同 161​​13 条评论​分享​喜欢​收藏​申请

Image Acquisition for Western Blotting | Bio-Rad

Image Acquisition for Western Blotting | Bio-Rad

Skip to main content

Browsing Modes for Business Users

Create mode

– the default mode when you create a requisition and PunchOut to Bio-Rad. You can create and edit multiple shopping carts

Edit mode

– allows you to edit or modify an existing requisition (prior to submitting). You will be able to modify only the cart that you have PunchedOut to, and will not have access to any other carts

Inspect mode

– when you PunchOut to Bio-Rad from a previously created requisition but without initiating an Edit session, you will be in this mode. You cannot modify any Cart contents

Please search here

Login | Register

My Bio-Rad

Log Out

Login | Register

ph | en

Contact Us

Quick Order

0

Welcome

Login

Register

My Bio-Rad

Log Out

Specialties Back Close Menu Specialties Life Science Bioprocessing Clinical Research Drug Discovery & Development Translational Research Wastewater Surveillance Clinical Diagnostics Diabetes / Hemoglobinopathies Hospital / Clinical Core Lab Immunology Infectious Disease Molecular Newborn Screening Transfusion Medicine group3 Quality Control Food & Beverage Testing Classroom Education Applications Back Close Menu Applications Life Science Bioprocess Analytics Bioprocess Chromatography Cell Line Development / Characterization Cell Research Gene Expression Analysis Immunology Mutation Detection Pathogen Detection Potency Protein Expression / Characterization / Quantitation Viral / Vector Characterization Clinical Diagnostics Autoimmune Bacteriology Blood Typing, Screening & Antibody Identification Diabetes Hemoglobinopathies Infectious Disease Testing Molecular Diagnostics Mycology Newborn Screening Toxicology Virology group3 Quality Management Data Management Systems Proficiency Testing & EQAS Quality Control Verification & Validation group4 Food & Beverage Testing Food & Beverage Safety Testing Cannabis Testing Veterinary Diagnostics Water Quality Testing group5 Classroom Education Biotechnology Textbook & Program DNA, PCR & Agarose Gel Electrophoresis Genetic Engineering, Microbiology & Model Organisms Proteins, Enzymes & ELISA COVID-19 Assay & Research Products Back Close Menu Products Life Science Products Antibodies Cell Isolation & Analysis Chromatography Digital PCR Electrophoresis & Blotting Flow Cytometers Immunoassays PCR & qPCR Sample Preparation & Quantitation Transfection Clinical Diagnostics Autoimmune Testing Blood Typing & Antibody Detection Diabetes Testing Hemoglobinopathy Testing Infectious Disease Testing Microbiology Testing Newborn Screening Quality Controls Software & Data Analysis group3 Molecular Testing Food & Beverage Testing Classroom Education Promotions Quick Order Services Back Close Menu Services Custom PCR Plastics & Reagents Expert Care Service New Labs & New Grants group3 Remote Diagnostic Services Supply Center Program group4 Trade-Up Program Resources Back Close Menu Resources Documentation Certificate of Analysis Literature Library ​​Electronic IFUs Literature Library Product Safety Data Sheets Quality Management Systems Certificates Quality Control Inserts Learning Center Life Science Clinical Testing Solutions Quality Controls Bioprocess Chromatography Resources Food & Beverage Testing Classroom Resources group3 Tutorials Webinars News & Events Back Close Menu News & Events Events Product News Corporate News

Order Status Quick Order Support

Breadcrumb

Home

Resources

Life Science

Introduction to Western Blotting

Image Acquisition for Western Blotting

Image Acquisition for Western Blotting

Overview

Sample Prep

Electrophoresis

Transfer

Immunodetection

Image Acquisition

Image Analysis

 

 

Better Image Acquisition

Imaging basics explained.

On This Page

Sensitivity

Signal & Background

Resolution & Binning

Dynamic Range

Fluorescent Detection

Instrumentation

Tips

Protocols

& Resources

Sign Up for Western Blotting Tips and Webinar Alerts

 

 

The goal of the western blotting image acquisition step is to convert the physical western blot into an image to visualize the protein bands that can then be analyzed for protein molecular weight and quantity. Traditionally, protein signal on blots was generated colorimetrically or using chemiluminescent substrates and captured using film. Only rough estimates of protein quantity could be inferred by eye, but converting that film image into a digital image allowed more accurate analysis of the data. Modern digital imagers skip this film step and directly capture blot images digitally.

In this section, we explain the basic concepts behind digital imaging as it pertains to modern western blotting to help you select the best imaging system and to get the most accurate and quantifiable data from your blots.

Imaging Sensitivity

One of the most common challenges for a western blotting experiment is the detection of low-abundance protein targets. This requires optimization of all the upstream steps of the western blotting workflow as well as an imaging system that has the highest sensitivity possible.

In western blotting, sensitivity of imaging instruments is often discussed using two somewhat differing definitions. Often, two imagers are evaluated by imaging the same blot with identical imaging times and comparing the resulting band intensities. While quick and easy to perform side-by-side, this method compares time to results, rather than the ultimate sensitivity of the imagers.

It is important to consider the instrument with the lower ultimate limit of detection, as long as it takes a reasonable amount of time to acquire that image. After all, the whole western blotting experiment can take upwards of two days so a few extra minutes during image acquisition is a small price to pay to see a low-expressing protein.

Definitions of Sensitivity

System A: Exposure time, 30 seconds

Intensity = 10,000

Signal to Background = 100

System B: Exposure time, 30 seconds

Intensity = 5,000

Signal to Background = 700

 

Time to Results

When evaluating candidate imaging systems for purchase, many researchers will take images of the same blot using identical (or near identical) settings. Band intensity is often used to compare imaging systems. This method provides a rough comparison of sensitivity, but if only intensity is evaluated and not measurements of signal to background or signal to noise, the system's limit of detection can be misestimated.

Limit of Detection

The limit of detection is the lowest intensity that can be confidently identified within a background. For a single pixel, one common definition is the lowest intensity that can be identified with a 99% confidence (example, greater than or equal to three standard deviations of baseline noise.)

In this example, even though system B shows a lower band intensity, it has superior signal to background so would be able to detect a fainter signal on the blot with a longer exposure time.

Visual Limit of Detection

On a western blot, we are detecting bands that have an expected size and shape, rather than single pixels. Our eyes can discern even very faint bands above background given the knowledge of this size and shape.

In this example, the last two bands in this serial dilution are visible to the eye, even though the pixels making up the band are barely above background.

Signal, Background, and Noise in Western Blot Imaging

Optimization of the upstream steps of western blotting for maximum sensitivity is largely about maximizing signal while minimizing background. Selection of an imaging system is no different and the most sensitive systems can detect low signal while introducing low levels of background noise that may obscure detection of that signal.

Two important and related measures of an imaging system’s performance are: its ability to generate images with a high signal-to-background, and high signal-to-noise ratios. Understanding both will allow you to better evaluate an imaging system and any images taken with that system.

Signal-to-Background

The goal for researchers performing western blots is to maximize the band from the protein of interest while minimizing the background seen on the membrane. This background is often a result of incomplete blocking, insufficient washing of excess antibody, or an improperly hydrated PVDF membrane (when using fluorescence detection).

Signal to Noise

Noise is the statistical uncertainty when measuring the intensity at a pixel. For example, a pixel may have a value of 1,000 during one instance, but a value of 1,100 the second time it is measured. This variation relates to the amount of noise that is accumulating within that signal. While a uniform background is relatively easy to subtract, noisy background may obscure a weak signal and is difficult to subtract from the analysis.

Signal to Background Measurement

High signal with uniform background. One common signal to background measurement is the intensity of the pixel divided by the mean intensity of the background pixels.

Signal:background  =

Pixel intensity

Average background intensity

 

If background is uniform, subtraction is straight forward, and the signal can be easily distinguished.

Signal-to-Noise Measurement

High signal with noisy background. A signal to noise measurement would be the intensity of the pixel divided by the standard deviation in the intensities of the background pixels.

Signal:noise  =

Pixel intensity

Standard deviation of background intensity

Signal among high noise can make background subtraction difficult.

 

Signal Collection

The entire system matters. Detection of low-expressing proteins requires that all parts of an imaging system work together to most efficiently gather the light from the blot.

Assay

A good image starts with a good blot. Whether the blot is chemiluminescent or fluorescent, proper upstream processing is critical for sensitive and quantitative detection of your protein.

Lens

Light that is generated from the blot must be collected efficiently for maximum sensitivity. The light-gathering ability of a lens is given by the focal ratio, or f number and is the ratio of the focal length to the diameter of the aperture. A lens with a large aperture will admit more light and is given a lower f number. Western blot imaging systems with lenses with lower f numbers will be more sensitive.

F number, N  =

focal length, f

Diameter of open aperture, D

The most sensitive systems can use lenses with f numbers as low as 0.94.

Sensor

Light that is collected by the lens must then be efficiently captured and converted to an electronic signal by the image sensor. Two primary factors are the physical size of the pixels and their quantum efficiency.

The physical size of a pixel, called pixel pitch, is presented to incoming photons for a given pixel. Larger pixels act as larger buckets and can capture more photons. For a given sensor size, there is a tradeoff with resolution since the same area divided amongst a greater number of pixels means each pixel is physically smaller.

Quantum efficiency is similar in concept to the quantum yield measurement for fluorophores. It is the percentage of incident photons that are then converted to an electrical signal as electrons by the sensor. Note that for any given sensor, quantum yields vary across the spectrum.

Optical Filters

For fluorescent western blots, proper optical filtering to only allow the right wavelength to pass the excitation and emission filters is critical to acquire images with high signal and low background.

Sources of Noise

Selection of the best reagents and proper upstream processing is not only critical to minimizing background, but also for sensitive western blots. To get the most out of your western blot, it is important to understand and select an imaging system that minimizes the introduction of noise or background into the blot image.

The major electronic sources of noise and background in a western blot image are read noise and dark noise produced within the camera, and the shot noise, which is from the statistical behavior of photons striking the sensor.

Read Noise

When an image sensor is read out, the accumulated charge in each pixel must be converted from an analog quantity to a digital signal. This action of reading each pixel introduces noise by the electronics within the camera. High read noise contributes to overall noise in an image and may obscure faint signals that are just at the noise floor.

With CCD cameras, the charges of all pixels are converted to voltage through a common pipeline off of the chip so they are subject to the same source of noise. However, with CMOS sensors, each pixel has its own associated amplifier so each pixel has its own amount of associated read noise that may vary slightly between pixels.

Whether based on mature CCD sensors or newer CMOS chips, Bio-Rad engineers have designed cameras with circuitry and components to minimize read noise during image acquisition in order to maximize sensitivity.

Dark Current

Dark current is the electric current that is generated through a CCD or CMOS chip even when no photons are striking the sensor. It is generated by the thermal energy in the silicon and is dependent on the temperature of the sensor. Higher temperatures cause greater dark current. Excessive dark current is controlled by cooling the sensor. Note that the largest reduction occurs with just a few degrees of cooling and a point of diminishing returns is typically achieved between –5°C and –10°C

The thermal energy from the dark current also carries a statistical fluctuation that is called dark noise. Since the noise generated by dark current follows Poisson statistics, the dark noise scales with the square root of the dark current. For western blotting imagers, active sensor cooling reduces dark noise so much so that it is usually small relative to read noise, until exposure times become lengthy, around 5 minutes.

Bio-Rad imagers designed for chemiluminescent detection actively cool the chip and maintain a constant temperature to minimize dark current to enable long exposures with minimal background noise.

Shot Noise

Shot noise, or photon noise, is the statistical noise associated with the discrete arrival of individual photons to a pixel on a sensor. Since photons act as discrete packets, their measurement obeys Poisson statistics.

An important characteristic of Poisson statistics is that the standard deviation of a measurement is equal to the square root of the average. For example, if 10,000 photons are collected on average, the standard deviation would be about 100. But if on average 100 photons are collected, the deviation from the average will be 10. This means that as the light intensity increases, the shot noise also increases, but at a slower rate. Since signal increases linearly, but shot noise increases at the square root of the intensity, the signal-to-noise ratio actually improves with increasing intensity. Thus, shot noise is more apparent at low illumination than at high illumination.

Cosmic Rays

For chemiluminescent blots, detection of low abundance proteins often require exposure times of several minutes. During this time, high-energy cosmic rays may strike the sensor, causing an increase in charge in a pixel, which is indistinguishable from the normal arrival of photons. Depending on the angle that the ray strikes the chip, it can leave an artifact in the shape of a bright dot (when the ray hits the sensor straight on) or as a streak (when the ray strikes the sensor at a low angle).

Exposure times of a few minutes can collect several such cosmic ray events. Since the bands on western blots are fairly large, and the artifacts caused by cosmic rays are small dots or a streak of only a single pixel wide, software algorithms such as those in Bio-Rad imaging systems, can be used to remove these artifacts from the image.

How Noise Scales with Exposure Time

The different sources of noise from the imaging system scale respond differently to increasing exposure times:

Signal from the blot increases

Read noise is constant

Dark noise increases

Cosmic rays increase

Shot noise increases (but at a slower rate than signal)

Most western blot imagers allow the acquisition of several short exposures to be combined into a single image. This is useful for getting a general idea for a target exposure time. Since read noise is constant for each exposure, the noise is additive when combined into the final image, these stacked images have higher noise than if a single long exposure were taken. For this reason, Bio-Rad imaging systems use sophisticated auto-exposure algorithms to arrive at the appropriate exposure time to eliminate the need for adding several images together.

Learn How Our Digital Imaging Systems are Engineered for Maximum Sensitivity in Western Blotting »

Resolution and Sensor Binning

Optical resolution: the ability to resolve or distinguish closely spaced features. Also called spatial resolution.

Pixel resolution: the total number of pixels in an image. Also called image resolution.

Most researchers want to capture their western blot images with the best resolution possible in order to have a sharp and visually pleasing image for publication or analysis.

Optical resolution: the ability to resolve or distinguish closely spaced features.

Spatial resolution: the total number of pixels in an image

Optical or spatial resolution is the ability of an imager to be able to distinguish object detail or two closely spaced features. Keep in mind, this is different than the total number of pixels in an image, which is also commonly referred to as spatial resolution. It is possible to capture an image with a high number of pixels, but due to poor lens design, is too blurry to distinguish between two closely spaced bands. The extra pixels in the image are therefore “empty resolution” and do not contribute to data accuracy nor information in the image.

Low- and High- Optical Resolution Images

Both images have the same image resolution (same number of pixels), but the image on the left has higher optical resolution, showing finer detail.

In western blotting, the bands on a gel or blot are typically several millimeters wide and 0.5 millimeters thick, relatively large compared to features that are imaged in other laboratory techniques, such as microscopy. Therefore, the optical constraints that are encountered in microscopy such as limitations based on the wavelength of light do not apply.

For blot imagers, the resolving power of an imager is primarily dependent on distance to the sample, the quality of the lens, and the sensor resolution. Image quality will be limited by the weakest link of the imaging system. A high-megapixel sensor cannot capture a good image with poor lens.

Factors Affecting Resolution​

1

Distance to sample

Greater distances between the blot and the camera make it more challenging to capture an image with fine detail. To overcome this, some imagers have mechanical zoom systems that physically reposition the camera and the blot closer to each other.

2

Lens

High-quality lenses that introduce a minimum of distortion are needed for high-resolution images. High-quality lenses are required for both high resolution and sensitivity (low f numbers).

3

Sensor

A sensor of sufficient spatial resolution is needed to capture the output of a high-resolution lens. The quality of the final image will be limited by the component with the worst quality, so resolution of the sensor and lens must be considered.

Binning

Binning is the process of combining the signal from adjacent pixels of a sensor into a single larger effective pixel (often called a “super pixel”). These larger "super pixels" capture photons more effectively, increasing sensitivity and requiring shorter exposure times, but with a loss of resolution.

What is binning?

1x1 (No binning)​

2x2 Binning​

3x3 Binning​

Just like a larger bucket catches more rain drops, larger pixels can capture more photons. With CCD and CMOS sensors, adjacent pixels can be combined to act as a single pixel with a larger effective size. These larger pixels capture more photons and increase sensor sensitivity.

To understand the increase of sensitivity, remember that with CCD sensors, read noise accumulates during the readout event of each pixel. When utilizing binning, the charge from individual pixels is combined into larger super pixels, and it is that super pixel that is read by the sensor electronics. Thus, the signal from each individual pixel is added, but the read noise is from the single read event of the super pixel. This increases the signal-to-noise ratio and therefore the sensitivity.

With CMOS sensors, each pixel is read individually and has its own small amplifier so there is not the same benefit to binning that CCD sensors enjoy. However, there is still a benefit mathematically. Since the noise between binned pixels is uncorrelated, the additive noise does not scale linearly, but rather with the square root of the number of pixels.

At extremely high binning settings, sensitivity might depend on the signal intensity and size of the feature being imaged. If the bin contains more pixels than the feature (for example, a band on a blot), the intensity is averaged over the entire binned area. In some images, this might render the feature not visible above the background.

Dynamic and Linear Range in Western Blot Imaging

Binning

1x1 (none)

2x2

4x4

8x8

Relative area

1

4

16

64

Relative exposure time

64 seconds

16 seconds

4 seconds

1 seconds

Relative read noise (CCD)

1

1

1

1

Relative read noise (CMOS)

1

2

4

8

Relative dark noise

1

2

4

8

 

For western blotting imaging systems, binning is often used to increase the sensitivity of a camera and reduce image acquisition time but at the cost of lower resolution of the resulting image.

For CCD sensors, there is a read noise advantage when binning because each binned super pixel is read only once. Since the signal is an accumulation from all the individual pixels that go into the binned super pixel, but the read noise is from a single read event, the read noise component of the signal to noise ratio is improved.

For CMOS sensors, each pixel is still read individually even when binned, but there is still a noise advantage because the noise scales with the square root of the number of pixels in the bin.

The dark current value scales linearly with the number of pixels (each bit of silicon is susceptible to thermal energy whether or not it is part of a binned pixel), but the dark noise scales with the square root of the number of pixels that are in the bin.

Dynamic and Linear Range in Western Blot Imaging

Saturation is the point at which the sensor pixels can no longer convert additional incoming photons to electrons. Imaging software will identify these pixels and usually display them in a different color.

Signal Accumulation Mode on a ChemiDoc Imaging System for Western Blotting

Many researchers desire to analyze both low and high expressing proteins in a sample on the same western blot. This poses a challenge during the imaging step because the long exposure times that allow detection of the low expressing protein result in saturated or “blown-out” bands of the abundant protein. Conversely, short exposure times that are appropriate for strongly expressed proteins may be too short for low abundance proteins, and their signal may be missed.

Saturation is the point at which the sensor pixels can no longer convert additional incoming photons to electrons. Imaging software will identify these pixels and usually display them in a different color.

Dynamic range is the ratio of signal strengths from weakest to strongest that the imaging system can capture in a single image. Understanding imaging dynamic range is critical for properly analyzing your data and interpreting your western blotting results.

Intrascene Dynamic Range

Instruments with limited dynamic ranges lead to strong bands that become saturated with exposure times that are necessary for weaker ones. Instruments with wide dynamic ranges allow image capture of bands with both low and high intensity, allowing analysis of proteins that are both weakly and strongly expressed.

Extended Dynamic Range Imaging

Some blots contain both very faint and very intense bands that cannot be captured with a single exposure.

To overcome this challenge, Bio-Rad western blot imagers, like the ChemiDoc systems, use extended dynamic range imaging that help capture these kinds of blots to maximize sensitivity without saturation.

1

First, two images of different exposure times are taken. A long exposure image that captures the lowest expressing protein but may result in saturation of strong bands. A short exposure image is taken that avoids saturation of the high-expressing protein but may miss low-abundance proteins.

2

The Image Lab Touch Software algorithm then replaces the saturated pixels in the long exposure image with pixels from the same location from the the short exposure image. To preserve the intensity values of those pixels, the algorithm mathematically scales the intensity based on the exposure time differences. The resulting merged image is beyond a 16-bit data depth, so this mathematical calculation is performed in floating point space and then re-scaled to 16 bits.

3

The final image includes both the faint signal (from the long exposure) and strong signal (from the short exposure). This result is an extended dynamic range image without saturation and is fully quantifiable.

Learn More about Our ChemiDoc Imaging Systems »

Linear Range

Tip

Bio-Rad offers fluorescent antibodies against common housekeeping proteins that have been tuned to yield a linear response across typical sample loading amounts.

Explore Our hFAB Fluorescent Housekeeping Protein Antibodies »

For western blot analysis, accurate quantitation requires the signal from the protein bands to be within the linear range of the imaging system. Within the linear range, the relationship between band intensity as recorded by the imager and protein quantity have a linear and proportional relationship. Signal outside the linear range can be affected by noise if the signal is weak or, if the signal is too strong, then the imaging system can no longer accurately record increasing signal intensity (saturation).

Tip

Bio-Rad offers fluorescent antibodies against common housekeeping proteins that have been tuned to yield a linear response across typical sample loading amounts.

Explore Our hFAB Fluorescent Housekeeping Protein Antibodies »

In western blotting, saturation may occur for several reasons. With high-sample loads, the membrane binding capacity may be exceeded. With traditional film detection, the photoreactive silver grains on the X-ray film may have already been activated and additional light in that region cannot be captured. With digital imagers, CCD and CMOS sensors also have a limit to the amount of photons that they can capture (called pixel well depth). Imaging software typically displays saturated pixels in a different color. For example, Image Lab Software displays these pixels in red. Note that saturation by other means like exceeding the binding capacity of the membrane, will not be detected by the software.

For the most accurate western blotting quantitation, loading controls are often used to normalize for differences in sample load. It is important to ensure that the target protein and the loading control are both within their linear ranges for the loaded quantity. Validate your loading control at the loaded amounts necessary for your target protein. You may need to optimize loading amounts, antibody concentration, or select a different loading control. Many commonly used loading controls such as GAPDH or actin are highly expressed and saturate even with low-loading amounts.

Only data within the linear range will be quantifiable. Weak signal can be affected by noise, making measurement inaccurate while signal that is saturated also cannot be accurately measured as increasing sample load will not be reflected by an increase in captured signal.

Mismatched dynamic range

Target protein and loading control well matched

For accurate data normalization to a loading control, both the target protein and the loading control must be within their linear dynamic ranges. If either one is outside the linear range, then quantitation will be inaccurate.

Bit depth

2 Bits

4 Bits

8 Bits

16 Bits

Examples of pixel intensity encoded at 2, 4, 8, or 16 bits.

When a western blot image is captured, it must be digitized to convert the continuous tone intensity of the blot into digital data that encodes the intensity levels of each pixel. The accuracy of this digital data is directly proportional to the bit depth of the imaging system.

For example, if two bits are used for each pixel, the intensity can be represented by four values or levels (2 x 2). If three bits are used, then the image can have eight intensity levels (2 x 2 x 2). For many modern imaging systems, 16 bits of data are used to encode intensity, which corresponds to 65,536 levels (216). Note that most systems assign black to 0, so the highest numerical intensity value is actually 65,535.

While related concepts, bit depth and dynamic range are two distinct ideas that are frequently confused. Bit depth describes how accurately a value can be represented digitally, so greater bit depth yields more accurate digitization of the intensities on a blot, but greater bit depth does not necessarily imply that an imager is capable of greater dynamic range. A staircase makes a useful analogy: dynamic range is the height of the staircase, and bit depth is the number of steps in the staircase. You can have a high or low staircase (dynamic range), and the number of steps in the staircase can vary independent of the height (bit depth). A greater bit depth will allow smoother transitions between intensity levels so it may produce a better looking image. However, modern 16 bit cameras have more than sufficient bit depth so dynamic range is usually the limiting factor.

Limited dynamic range and bit depth

Limited dynamic range but increased bit depth

Wide dynamic range but limited bit depth

Fluorescent Western Blot Detection

Fluorescent western blots are becoming increasingly more popular because of their advantages with multiplex detection. Fluorescent detection differs from chemiluminescence in that light is generated from excitation of a fluorescent molecule conjugated to the detection antibody, not an enzymatic reaction.

The fluorophore is excited by this light and emits light at a longer wavelength. The imaging system blocks the excitation light from entering the camera by using wavelength-specific optical filters that only permit desired emitted light of the right wavelength to pass. This wavelength-specificity allows the imager to distinguish excitation light from the emitted light and further, allows differentiation between different protein targets, provided that the fluorophores conjugated to the secondary antibodies are spectrally distinct.

Advantages of Fluorescent Detection:

Greater linear range. Chemiluminescence is dependent on enzyme substrate kinetics that limit linear range

Multiplex detection. Different protein targets can be detected with different fluorophores with distinct excitation and/or emission spectra.

Blots can be archived for several months

Disadvantages of Fluorescent Detection:

Imaging systems with illumination sources and emission filters tend to be more costly

Sensitivity has historically been lower than chemiluminescence, but new fluorophores match chemiluminescence

Considerations for Fluorescent Western Blotting

Fluorescent imaging requires consideration of several factors to take advantage of the benefits of fluorescent detection and to optimize sensitivity and data quality.

Fluorophore and Filter Spectra

Fluorophore spectra

Many antibody suppliers provide excitation and emission spectra for the fluorophores conjugated to their antibodies.

Filter bandpass

The optical filters in western blotting imagers are designed to restrict all light from passing except through a carefully selected range of wavelengths, called the "bandpass."

Filters are typically specified by the wavelength at the center of the bandpass and the width of the passing window, in nanometers. In this example, the excitation filter is "637/25", meaning the bandpass is centered at 637 nm and allows light from 624–649 nm to pass.

Optimal spectral match

The excitation and emission spectra of the fluorophore must match the band passes of the filters of your instrument.

The excitation maxima for this fluorophore matches the excitation wavelengths of the imaging instrument well. Likewise, the bandpass for the emission filter captures the vast majority of the emitted light for this flurophore.

Poor spectral match

This fluorophore would be a poor choice for your instrument since the emission spectra does not overlap very much with the emission filter bandpass. Most of the emitted light from the fluorophore will be lost.

Learn More about Fluorescent Western Blotting »

Multiplexing Fluorescent Western Blotting

One of the major advantages of fluorescent detection is the ability to image multiple protein targets on a single blot. Multiplexing relies on the ability to distinguish signals from multiple proteins, both immunologically as well as spectrally. In order to successfully perform a multiplex western blot, there are several considerations to keep in mind.

Immunologically, the primary antibodies must be specific to only the proteins that they were raised against and must be from different host species for each target. The primary antibodies should ideally be from distantly related species to avoid possible cross-reactivity. For example, use mouse and rabbit to detect two targets and avoid combinations like mouse and rat.

The signals from multiple target proteins are also distinguished spectrally. This means that the fluorophores conjugated to the secondary antibodies have different excitation and/or emission spectra so the proper combination of optical filters can be used to distinguish between emitted light from each secondary antibody.

Fluorophore Selection for Multiplexing

Compatible multiplexing

When designing a multiplex experiment, select fluorophores with distinct spectra to minimize cross-talk. These two fluorophores have non-overlapping emission spectra so can be easily discriminated by the emission band pass filters.

Incompatible for multiplexing

These fluorophores would be a poor choice for multiplexing. Their signifcant overlapping emission spectra with significant emission within the bandpass of the other fluorophore leads to bleed-over between channels.

Imaging System Channel

Excitation Filter

Bandpass (nm)

Emission Filter

Bandpass (nm)

Example Compatible Fluorophore

Blue

460–490

518–546

Alexa 488

DyLight 488

Green

520–545

577–627

Rhodamine

Alexa 546

DyLight 550

Red

625–650

675–725

Alexa 647

DyLight 649

Far Red

650–675

700–730

Alexa 680

DyLight 680

IRDye 700DX

Near Infra-Red (IR)

755–777

813–860

Alexa 790

DyLight 800

IRDye 800CW

Blue nanoparticle polymer

460–490

518–546

StarBright 520

Near IR nanoparticle polymer

460–490

813–860

StarBright 700

Example excitation and emission wavelength bandpass filters from Bio-Rad's ChemiDoc MP Imaging System.

Recommended Fluorophore Combinations for Multiplex Detection:

Targets

Primary Target

(Fluorophore A)

Second Target

(Fluorophore B)

Third Target

(Fluorophore C)

1

StarBright Blue 700

2

StarBright Blue 700

hFAB Rhodamine HKP* Antibody (α-actin/tubulin/GAPDH)

3

StarBright Blue 700

StarBright Blue 520

hFAB Rhodamine HKP Antibody (α-actin/tubulin/GAPDH)

See Our Selection of Fluorescent Western Blotting Antibodies »

Western Blot Imaging Instrumentation

Each component of a digital imaging system contributes to the performance and data quality of the entire system. The optical components such as the lens and filters, electronic components of the camera, and illumination sources all play a role in the overall performance of the imaging system. In this section, we give an overview of a typical modern western blot imaging system to highlight some of their characteristics that lead to signal sensitivity or image noise and background.

Imaging System Design

On this page, you have learned about the concepts behind imaging western blots. Engineers and scientists work to design an imaging system to maximize instrument sensitivity, reduce background, make the data quantifiable.

Some imaging systems may have a single, highly-specialized component that may appear to make the instrument extremely sensitive, but all components of an imaging system must work together or it will be limited by the weakest performing component. For example, cameras with high megapixel sensors may not yield better images if the lens or other parts of the system do not match its performance.

Important Imaging System Features

Epi light sources​

For fluorescent western blots, the blot must be illuminated by a light source. The light source is usually an LED that outputs a narrow range of wavelengths that is further refined by the emission filters. The emission filters must be designed to allow the correct wavelengths of light to pass while simultaneously blocking undesired wavelengths. The lights must also be positioned and designed to provide even illumination to the sample, to prevent dark or light areas that could affect band quantitation.

Chemi Blot

For chemiluminescent blots, since the blot itself generates light, there is no need for a light source. The light from the blot is captured by the lens and camera of the imaging system.

Lens

Light from the blot is captured by the lens, which must be designed to capture as much light as possible in order to maximize sensitivity, without introducing distortion to the image. Moreover, interior materials and coatings must be designed to control internal reflections to avoid introducing background haze or glow to images.

Emission filters

For fluorescent western blots, emitted light from the fluorophores conjugated to secondary antibodies is intermixed with the excitation light and background light from the membrane. Emission filters are designed with appropriate bandpasses to both admit desired wavelengths emitted by the secondary antibodies as well as reject the excitation light to eliminate unwanted background.

Camera and sensor

The camera and sensor record the light admitted by the lens and filters. The sensor and supporting camera electonics must be optimized for maximum sensitivity while also minimizing electronics noise such as read noise and dark current.

With optimized system design, all components of an imaging system work together to capture blot data so you can analyze even low-abundance, protein-expression levels with confidence.

Learn More about the ChemiDoc Imaging System »

Tips for Better Western Blot Imaging

Turn on your imager's "show saturated pixels" option. This helps you avoid excessively long exposure times that lead to saturated bands and non-quantifiable data.

Give your imaging system's auto-exposure algorithms the first shot at an image. Most are sophisticated enough to fill the dynamic range of the sensor while still avoiding pixel saturation. This gives the most accurate, quantifiable data possible.

For multiplex fluorescent westerns, reserve your long wavelengths for low-abundance proteins since membrane background is lowest and sensitivity is greatest with longer wavelengths.

Molecular weight standards are often very intense, causing auto-exposure algorithms to take exposures too short for your proteins of interest. If this is the case, manually enter a longer exposure time. Alternatively, use your imager's "region-of-interest" feature to specify the area of the blot to apply the auto exposure algorithm. In both cases, the standards will be saturated but this is inconsequential because they are not used to calculate quantity.

 

How to get the best possible data using the ChemiDoc Instrument

Auto-Exposure Settings for Western Blot Imaging in Image Lab Touch Software

Targeting Area of Interest for Auto Exposure in Image Lab Touch Software

Western Blot Imaging Protocols and Resources

Find the right products for you using the free Western Blot Selector Tool

Start Tool

Find the right products for you using the free Western Blot Selector Tool

Start Tool

Western Blotting Protocol Library​

Filter by your laboratory set-up and reagents to get a custom western blotting protocol that best fits your needs.

Improving Digital Imaging for Quantitative Western Blotting

Learn about the design principles behind designing a high-performance western blot imaging system.

Film vs. Digital Western Blot Imaging

Learn about the advantages of digital imaging over traditional film.

Fundamentals of Western Blotting Course #4: Image Acquisition​

 

Get Your Free Protein Standard Temporary Tattoo

You too can sport a Precision Plus Protein Kaleidoscope standard tatto temporarily.

Get Yours Now

Better Western Blotting Guide

Tips, Techniques, and Technologies from the Western Blotting Experts at Bio-Rad Laboratories

Get Yours Free Guide

Western Blot University

Courses designed to make you a western blotting expert.

Enroll Today

This English section is not intended for French healthcare professionals.

These pages list our product offerings in these areas. Some products have limited regional availability. If you have a specific question about products available in your area, please contact your local sales office or representative.

Follow Us

 Bio-rad LinkedIn  Bio-rad Antibodies LinkedIn

 Bio-rad YouTube  Bio-rad Antibodies YouTube

 Bio-rad Twitter  Bio-rad Antibodies Twitter

 Bio-rad Facebook  Bio-rad Antibodies Facebook

 Bio-rad Instagram

 Bio-rad Pinterest

About Bio-Rad

Bioradiations

Contact Us

Sustainability

Sitemap

Corporate News

Careers

Investor Relations

Footer

Home

|

Trademarks

|

Site Terms

|

Cybersecurity

|

Web Accessibility

|

Terms & Conditions

|

Privacy

© 2024 Bio-Rad Laboratories, Inc.

Philippines

蛋白质免疫印迹(Western Blot,WB ) - 实验方法 - 丁香通

蛋白质免疫印迹(Western Blot,WB ) - 实验方法 - 丁香通

丁香通

丁香园

论坛

丁香客

医药招聘

丁香医生

更多

会议

调查派

用药助手

丁当铺

丁香搜索

医药数据库

来问医生

我要登录

|

免费注册

|

我的丁香通

卖家:

成为卖家

更多合作

买家:

买家中心

移动端

发布求购 用户服务

产品 实验 品牌

搜索

搜产品

搜产品

搜实验

搜品牌

大家都在搜

免费发布求购

搜索

发布求购

全部产品分类

首页

丁香实验new

促销

试用中心

学术专区

资讯

品牌学堂

丁香学社

首页 实验方法 蛋白质免疫印迹(Western Blot,WB )

蛋白质免疫印迹(Western Blot,WB )

蛋白质免疫印迹(Western Blot,WB )

标签: western-blot 免疫印迹 蛋白质

蛋白质免疫印迹可应用于:(1)从蛋白质混合物中检出目标蛋白质;(2)定量或定性确定细胞或组织中蛋白质的表达情况;(3)用于蛋白质-蛋白质、蛋白质-DNA、蛋白质-RNA相互作用后续分析。

5160 收藏 504534 阅读

做实验、写文章有问题?快来领取超实用科研工具箱,实验、数据、写作一网打尽

限时免费领取

底物化学发光ECL法

Western印迹法

图解

实验方法原理

Western免疫印迹,是将蛋白质转移到膜上,然后利用抗体进行检测的方法。对已知表达蛋白,可用相应抗体作为一抗进行检测,对新基因的表达产物,可通过融合部分的抗体检测。 与Southern或Northern杂交方法类似,但Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,探针是抗体,显色用标记的二抗。 经过PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。  

实验材料

蛋白质样品

试剂、试剂盒

丙烯酰胺 SDS  Tris-HCl β-巯基乙醇 ddH2O 甘氨酸 Tris 甲醇 PBS NaCl KCl Na2HPO4 KH2PO4 ddH2O 考马斯亮兰 乙酸 脱脂奶粉 硫酸镍胺 H2O2 DAB试剂盒

仪器、耗材

电泳仪 电泳槽 离心机 离心管 硝酸纤维素膜 匀浆器 剪刀 移液枪 刮棒

实验步骤

一、试剂准备

 

1.  SDS-PAGE试剂:见聚丙烯酰胺凝胶电泳实验。

 

2.  匀浆缓冲液:1.0 M Tris-HCl(pH 6.8) 1.0 ml;10%SDS 6.0 ml;β-巯基乙醇 0.2 ml;ddH2O 2.8 ml。

 

3.  转膜缓冲液:甘氨酸 2.9 g;Tris 5.8 g;SDS 0.37 g;甲醇200 ml;加ddH2O定容至1000 ml。

 

4.  0.01 M PBS(pH7.4):NaCl 8.0 g;KCl 0.2 g;Na2HPO4 1.44 g;KH2PO4 0.24 g;加ddH2O至1000 ml。

 

5.  膜染色液:考马斯亮兰 0.2 g;甲醇80 ml;乙酸2 ml;ddH2O118 ml。包被液(5%脱脂奶粉,现配):脱脂奶粉1.0 g 溶于20 ml的0.01 M PBS中。

 

6.  显色液:DAB 6.0 mg;0.01 M PBS 10.0 ml;硫酸镍胺 0.1 ml;H202 1.0 ul。

二、蛋白样品制备

 

1.   单层贴壁细胞总蛋白的提取

 

(1) 倒掉培养液,并将瓶倒扣在吸水纸上使吸水纸吸干培养液(或将瓶直立放置一会儿使残余培养液流到瓶底然后再用移液器将其吸走)。

 

(2) 每瓶细胞加3 ml 4℃预冷的PBS(0.01M pH7.2~7.3)。平放轻轻摇动1 min洗涤细胞,然后弃去洗液。重复以上操作两次,共洗细胞三次以洗去培养液。将PBS弃净后把培养瓶置于冰上。

 

(3)按1ml裂解液加10 ul PMSF(100 mM),摇匀置于冰上。(PMSF要摇匀至无结晶时才可与裂解液混合。)

 

(4) 每瓶细胞加400 ul含PMSF的裂解液,于冰上裂解30 min,为使细胞充分裂解培养瓶要经常来回摇动。

 

(5)裂解完后,用干净的刮棒将细胞刮于培养瓶的一侧(动作要快),然后用枪将细胞碎片和裂解液移至1.5 ml离心管中。(整个操作尽量在冰上进行。)

 

(6)于4℃下12000 rpm离心5 min。(提前开离心机预冷)

 

(7) 将离心后的上清分装转移倒0.5 ml的离心管中放于-20℃保存。

 

2.   组织中总蛋白的提取

 

(1)将少量组织块置于1~2 ml匀浆器中球状部位,用干净的剪刀将组织块尽量剪碎。

 

(2) 加400 uL单去污剂裂解液裂(含PMSF)于匀浆器中,进行匀浆。然后置于冰上。

 

(3)几分钟后再碾一会儿再置于冰上,要重复碾几次使组织尽量碾碎。

 

(4) 裂解30 min后,即可用移液器将裂解液移至1.5 ml离心管中,然后在4℃下12000 rpm离心5 min,取上清分装于0.5 ml离心管中并置于-20℃保存。

 

3.   加药物处理的贴壁细胞总蛋白的提取

 

由于受药物的影响,一些细胞脱落下来,所以除按1操作外还应收集培养液中的细胞。以下是培养液中细胞总蛋白的提取:

 

(1)将培养液倒至15 ml离心管中,于2500 rpm离心5 min。

 

(2)弃上清,加入4 ml PBS并用枪轻轻吹打洗涤,然后2500 rpm离心5 min。弃上清后用PBS重复洗涤一次。

 

(3)用枪洗干上清后,加100 uL裂解液(含PMSF)冰上裂解30 min,裂解过程中要经常弹一弹以使细胞充分裂解。

 

(4)将裂解液与培养瓶中裂解液混在一起4℃、12000 rpm离心5 min,取上清分装于0.5 ml离心管中并置于-20℃保存。

 

三、 蛋白含量的测定

 

1.  制作标准曲线

 

(1)从-20℃取出1 mg/ml BSA,室温融化后,备用。

 

(2)取18个1.5 ml离心管,3个一组,分别标记为0 mg,2.5 mg,5.0 mg,10.0 mg,20.0 mg,40.0 mg。

 

(3)按下表在各管中加入各种试剂。

(4) 混匀后,室温放置2 min。在生物分光光度计(Bio-Photometer,Eppendorf)上比色分析。

 

2.  检测样品蛋白含量

 

(1)取足量的1.5 ml离心管,每管加入4℃储存的考马斯亮蓝溶液1 ml。室温放置30 min后即可用于测蛋白。

 

(2) 取一管考马斯亮蓝加0.15 mol/L NaCl溶液100 ml,混匀放置2分钟可做为空白样品,将空白倒入比色杯中在做好标准曲线的程序下按blank测空白样品。

 

(3)弃空白样品,用无水乙醇清洗比色杯2次(每次0.5 mL),再用无菌水洗一次。

 

(4)取一管考马斯亮蓝加95 ml 0.15 mol/L NaCl NaCl溶液和5 ml待测蛋白样品,混匀后静置2 min,倒入扣干的比色杯中按sample键测样品。

 

注意:每测一个样品都要将比色杯用无水乙醇洗2次,无菌水洗一次。可同时混合好多个样品再一起测,这样对测定大量的蛋白样品可节省很多时间。测得的结果是5 ml样品含的蛋白量。

 

四、SDS-PAGE电泳

 

1.  清洗玻璃板

 

一只手扣紧玻璃板,另一只手蘸点洗衣粉轻轻擦洗。两面都擦洗过后用自来水冲,再用蒸馏水冲洗干净后立在筐里晾干。

 

2.  灌胶与上样

 

(1)玻璃板对齐后放入夹中卡紧。然后垂直卡在架子上准备灌胶。(操作时要使两玻璃对齐,以免漏胶。)

 

(2)按前面方法配10%分离胶,加入TEMED后立即摇匀即可灌胶。灌胶时,可用10 ml枪吸取5 ml胶沿玻璃放出,待胶面升到绿带中间线高度时即可。然后胶上加一层水,液封后的胶凝的更快。(灌胶时开始可快一些,胶面快到所需高度时要放慢速度。操作时胶一定要沿玻璃板流下,这样胶中才不会有气泡。加水液封时要很慢,否则胶会被冲变型。)

 

(3)当水和胶之间有一条折射线时,说明胶已凝了。再等3 min使胶充分凝固就可倒去胶上层水并用吸水纸将水吸干。

 

(4)按前面方法配4%的浓缩胶,加入TEMED后立即摇匀即可灌胶。将剩余空间灌满浓缩胶然后将梳子插入浓缩胶中。灌胶时也要使胶沿玻璃板流下以免胶中有气泡产生。插梳子时要使梳子保持水平。由于胶凝固时体积会收缩减小,从而使加样孔的上样体积减小,所以在浓缩胶凝固的过程中要经常在两边补胶。待到浓缩胶凝固后,两手分别捏住梳子的两边竖直向上轻轻将其拔出。

 

(5)用水冲洗一下浓缩胶,将其放入电泳槽中。(小玻璃板面向内,大玻璃板面向外。若只跑一块胶,那槽另一边要垫一块塑料板且有字的一面面向外。)

 

(6)测完蛋白含量后,计算含50 ng蛋白的溶液体积即为上样量。取出上样样品至0.5 ml离心管中,加入5×SDS 上样缓冲液至终浓度为1×。(上样总体积一般不超过15 ul,加样孔的最大限度可加20 ul样品。)上样前要将样品于沸水中煮5 min使蛋白变性。

 

(7) 加足够的电泳液后开始准备上样。(电泳液至少要漫过内测的小玻璃板。)用微量进样器贴壁吸取样品,将样品吸出不要吸进气泡。将加样器针头插至加样孔中缓慢加入样品。(加样太快可使样品冲出加样孔,若有气泡也可能使样品溢出。加入下一个样品时,进样器需在外槽电泳缓冲液中洗涤3次,以免交叉污染。

 

3.   电泳

 

电泳时间一般4~5 h,电压为40 V较好,也可用60 V。电泳至溴酚兰刚跑出即可终止电泳,进行转膜。

 

五、转膜

 

1.   转一张膜需准备6张7.0~8.3 cm的滤纸和1张7.3~8.6 cm的硝酸纤维素膜。切滤纸和膜时一定要戴手套,因为手上的蛋白会污染膜。将切好的硝酸纤维素膜置于水上浸2 h才可使用。(用镊子捏住膜的一边轻轻置于有超纯水的平皿里,要使膜浮于水上,只有下层才与水接触。这样由于毛细管作用可使整个膜浸湿。若膜沉入水里,膜与水之间形成一层空气膜,这样会阻止膜吸水。

 

2.   在加有转移液的搪瓷盘里放入转膜用的夹子、两块海绵垫、一支玻棒、滤纸和浸过的膜。

 

3.   将夹子打开使黑的一面保持水平。在上面垫一张海绵垫,用玻棒来回擀几遍以擀走里面的气泡。(一手擀另一手要压住垫子使其不能随便移动。)在垫子上垫三层滤纸(可三张纸先叠在一起在垫于垫子上),一手固定滤纸一手用玻棒擀去其中的气泡。

 

4.  要先将玻璃板撬掉才可剥胶,撬的时候动作要轻,要在两个边上轻轻的反复撬。撬一会儿玻璃板便开始松动,直到撬去玻板。(撬时一定要小心,玻板很易裂。)除去小玻璃板后,将浓缩胶轻轻刮去(浓缩胶影响操作),要避免把分离胶刮破。小心剥下分离胶盖于滤纸上,用手调整使其与滤纸对齐,轻轻用玻棒擀去气泡。将膜盖于胶上,要盖满整个胶(膜盖下后不可再移动)并除气泡。在膜上盖3张滤纸并除去气泡。最后盖上另一个海绵垫,擀几下就可合起夹子。整个操作在转移液中进行,要不断的擀去气泡。膜两边的滤纸不能相互接触,接触后会发生短路。(转移液含甲醇,操作时要戴手套,实验室要开门以使空气流通。)

 

5.  将夹子放入转移槽槽中,要使夹的黑面对槽的黑面,夹的白面对槽的红面。电转移时会产热,在槽的一边放一块冰来降温。一般用60 V转移2 h或40 V转移3 h。

 

6.  转完后将膜用1×丽春红染液染5 min(于脱色摇床上摇)。然后用水冲洗掉没染上的染液就可看到膜上的蛋白。将膜晾干备用。

 

六、免疫反应

 

1 .  将膜用TBS从下向上浸湿后,移至含有封闭液的平皿中,室温下脱色摇床上摇动封闭1h。

 

2.   将一抗用TBST稀释至适当浓度(在1.5 ml离心管中);撕下适当大小的一块儿保鲜膜铺于实验台面上,四角用水浸湿以使保鲜膜保持平整;将抗体溶液加到保鲜膜上;从封闭液中取出膜,用滤纸吸去残留液后,将膜蛋白面朝下放于抗体液面上,掀动膜四角以赶出残留气泡;室温下孵育1~2 h后,用TBST在室温下脱色摇床上洗两次,每次10 min;再用TBS洗一次,10 min。

 

3.  同上方法准备二抗稀释液并与膜接触,室温下孵育1~2 h后,用TBST在室温下脱色摇床上洗两次,每次10 min;再用TBS洗一次,10 min,进行化学发光反应。

 

七、化学发光,显影,定影

 

1.  将A和B两种试剂在保鲜膜上等体积混合;1 min后,将膜蛋白面朝下与此混合液充分接触;1 min后,将膜移至另一保鲜膜上,去尽残液,包好,放入X-光片夹中。

 

2.   在暗室中,将1×显影液和定影液分别到入塑料盘中;在红灯下取出X-光片,用切纸刀剪裁适当大小(比膜的长和宽均需大1 cm);打开X-光片夹,把X-光片放在膜上,一旦放上,便不能移动,关上X-光片夹,开始计时;根据信号的强弱适当调整曝光时间,一般为1 min或5 min,也可选择不同时间多次压片,以达最佳效果;曝光完成后,打开X-光片夹,取出X-光片,迅速浸入显影液中显影,待出现明显条带后,即刻终止显影。显影时间一般为1~2 min(20~25℃),温度过低时(低于16℃)需适当延长显影时间;显影结束后,马上把X-光片浸入定影液中,定影时间一般为5~10 min,以胶片透明为止;用自来水冲去残留的定影液后,室温下晾干。

 

应注意的是:显影和定影需移动胶片时,尽量拿胶片一角,手指甲不要划伤胶片,否则会对结果产生影响。

 

八、凝胶图象分析

 

将胶片进行扫描或拍照,用凝胶图象处理系统分析目标带的分子量和净光密度值。

注意事项

1.  一抗、二抗的稀释度、作用时间和温度对不同的蛋白要经过预实验确定最佳条件。   2.  显色液必须新鲜配置使用,最后加入H2O2。   3.  DAB有致癌的潜在可能,操作时要小心仔细。  

其他

一、免疫反应   1.  用0.01 M PBS洗膜,5 min × 3次。   2.  加入包被液,平稳摇动,室温2 h。   3.  弃包被液,用0.01 M PBS洗膜,5 min × 3次。   4.  加入一抗(按合适稀释比例用0.01 M PBS稀释,液体必须覆盖膜的全部),4℃ 放置12 h以上。阴性对照,以1%BSA取代一抗,其余步骤与实验组相同。   5.  弃一抗和1%BSA,用0.01 M PBS分别洗膜,5 min×4次。   6.  加入辣根过氧化物酶偶联的二抗(按合适稀释比例用0.01 M  PBS稀释),平稳摇动,室温2 h。   7.  弃二抗,用0.01 M PBS洗膜,5 min×4次。   8.  加入显色液,避光显色至出现条带时放入双蒸水中终止反应。

实验材料

蛋白质样品

试剂、试剂盒

裂解液 PBS G 250考马斯亮蓝溶液 NaCl SDS上样缓冲液 电泳缓冲液 转移缓冲液 丽春红染液 封闭液 TBST TBS 洗脱抗体缓冲液 显影液 定影液 抗体 化学发光试剂

仪器、耗材

高压锅 玻璃匀浆器 高速离心机 分光光度仪 -20℃低温冰箱 垂直板电泳转移装置 恒温水浴摇床 多用脱色摇床

实验步骤

一、操作步骤:

1. 蛋白样品制备

(1) 单层贴壁细胞总蛋白的提取:

① 倒掉培养液,并将瓶倒扣在吸水纸上使吸水纸吸干培养液(或将瓶直立放置一会儿使残余培养液流到瓶底然后再用移液器将其吸走)。

② 每瓶细胞加3ml 4℃预冷的PBS(0.01 M pH7.2~7.3)。平放轻轻摇动1 min 洗涤细胞,然后弃去洗液。重复以上操作两次,共洗细胞三次以洗去培养液。将PBS弃净后把培养瓶置于冰上。

③ 按1ml裂解液加10 μl PMSF(100 mM),摇匀置于冰上。(PMSF要摇匀至无结晶时才可与裂解液混合。)

④ 每瓶细胞加400 μl含PMSF的裂解液,于冰上裂解30 min,为使细胞充分裂解培养瓶要经常来回摇动。

⑤裂解完后,用干净的刮棒将细胞刮于培养瓶的一侧(动作要快),然后用枪将细胞碎片和裂解液移至1.5 ml 离心管中。(整个操作尽量在冰上进行。)

⑥于4℃下12000 rpm离心5 min 。(提前开离心机预冷)

⑦将离心后的上清分装转移倒0.5 min 的离心管中放于-20℃保存。

(2) 组织中总蛋白的提取:

① 将少量组织块置于1~2 ml 匀浆器中球状部位,用干净的剪刀将组织块尽量剪碎。

② 加400 l单去污剂裂解液裂(含PMSF)于匀浆器中,进行匀浆。然后置于冰上。

③ 几分钟后再碾一会儿再置于冰上,要重复碾几次使组织尽量碾碎。

④ 裂解30 min后,即可用移液器将裂解液移至1.5 ml 离心管中,然后在4℃下12000 rpm 离心5 min ,取上清分装于0.5 ml 离心管中并置于-20℃保存。

(3) 加药物处理的贴壁细胞总蛋白的提取:

由于受药物的影响,一些细胞脱落下来,所以除按(1)操作外还应收集培养液中的细胞。以下是培养液中细胞总蛋白的提取:

① 将培养液倒至1.5 ml 离心管中,于2500 rpm 离心5 min。

②弃上清,加入4 ml PBS并用枪轻轻吹打洗涤,然后2500 rpm 离心5 min 。弃上清后用PBS重复洗涤一次。

③ 用枪洗干上清后,加100 μl 裂解液(含PMSF)冰上裂解30 min,裂解过程中要经常弹一弹以使细胞充分裂解。

④ 将裂解液与培养瓶中裂解液混在一起4℃、12000 rpm 离心5 min,取上清分装于0.5 ml 离心管中并置于-20℃保存。

2. 蛋白含量的测定

(1) 制作标准曲线

①从-20℃取出1 mg/ml BSA,室温融化后,备用。

②取18个1.5 ml 离心管,3个一组,分别标记为 0 μg,2.5 μg,5.0 μg ,10.0 μg ,20.0 μg ,40.0μg。

 

③按下表在各管中加入各种试剂。

 

0 μg

2.5 μg

5.0 μg

10.0 μg

20.0 μg

40.0 μg

1mg/ml BSA

——

2.5 μl

5.0 μl

10.0 μl

20.0 μl

40.0 μl

0.15mol/L NaCl

100 μl

97.5 μl

95.0 μl

90.0 μl

80.0 μl

60.0 μl

G250考马斯亮蓝溶液

1 ml

1 ml

1 ml

1 ml

1 ml

1 ml

 

④混匀后,室温放置2 min 。在生物分光光度计(Bio-Photometer,Eppentoff)上比色分析。

 

(2) 检测样品蛋白含量

①取足量的1.5 ml 离心管,每管加入4℃储存的考马斯亮蓝溶液1 ml 。室温放置30 min后即可用于测蛋白。

②取一管考马斯亮蓝加0.15 mol/L NaCl溶液100 μl,混匀放置2分钟可做为空白样品,将空白倒入比色杯中在做好标准曲线的程序下按blank测空白样品。

③弃空白样品,用无水乙醇清洗比色杯2次(每次0.5 ml),再用无菌水洗一次。

④取一管考马斯亮蓝加95 μl 0.15 mol/L NaCl NaCl溶液和5 μl待测蛋白样品,混匀后静置2 min,倒入扣干的比色杯中按sample键测样品。

注意:每测一个样品都要将比色杯用无水乙醇洗2次,无菌水洗一次。可同时混合好多个样品再一起测,这样对测定大量的蛋白样品可节省很多时间。测得的结果是5 μl样品含的蛋白量。

3. SDS-PAGE电泳

(1) 清洗玻璃板:

一只手扣紧玻璃板,另一只手蘸点洗衣粉轻轻擦洗。两面都擦洗过后用自来水冲,再用蒸馏水冲洗干净后立在筐里晾干。

(2) 灌胶与上样

①玻璃板对齐后放入夹中卡紧。然后垂直卡在架子上准备灌胶。(操作时要使两玻璃对齐,以免漏胶。)

②按前面方法配10%分离胶,加入TEMED后立即摇匀即可灌胶。灌胶时,可用10 ml 枪吸取5 ml 胶沿玻璃放出,待胶面升到绿带中间线高度时即可。然后胶上加一层水,液封后的胶凝的更快。(灌胶时开始可快一些,胶面快到所需高度时要放慢速度。操作时胶一定要沿玻璃板流下,这样胶中才不会有气泡。加水液封时要很慢,否则胶会被冲变型。)

③当水和胶之间有一条折射线时,说明胶已凝了。再等3 min 使胶充分凝固就可倒去胶上层水并用吸水纸将水吸干。

④按前面方法配4%的浓缩胶,加入TEMED后立即摇匀即可灌胶。将剩余空间灌满浓缩胶然后将梳子插入浓缩胶中。灌胶时也要使胶沿玻璃板流下以免胶中有气泡产生。插梳子时要使梳子保持水平。由于胶凝固时体积会收缩减小,从而使加样孔的上样体积减小,所以在浓缩胶凝固的过程中要经常在两边补胶。待到浓缩胶凝固后,两手分别捏住梳子的两边竖直向上轻轻将其拔出。

⑤用水冲洗一下浓缩胶,将其放入电泳槽中。(小玻璃板面向内,大玻璃板面向外。若只跑一块胶,那槽另一边要垫一块塑料板且有字的一面面向外。)

⑥测完蛋白含量后,计算含50 μg蛋白的溶液体积即为上样量。取出上样样品至0.5 ml 离心管中,加入5×SDS 上样缓冲液至终浓度为1×。(上样总体积一般不超过15 μl,加样孔的最大限度可加20 μl样品。)上样前要将样品于沸水中煮5 min使蛋白变性。

⑦加足够的电泳液后开始准备上样。(电泳液至少要漫过内测的小玻璃板。)用微量进样器贴壁吸取样品,将样品吸出不要吸进气泡。将加样器针头插至加样孔中缓慢加入样品。(加样太快可使样品冲出加样孔,若有气泡也可能使样品溢出。加入下一个样品时,进样器需在外槽电泳缓冲液中洗涤3次,以免交叉污染。

(3) 电泳

电泳时间一般4~5 h,电压为40 V较好,也可用60 V。电泳至溴酚兰刚跑出即可终止电泳,进行转膜。

4. 转膜

(1) 转一张膜需准备6张7.0~8.3 cm的滤纸和1张7.3~8.6 cm的硝酸纤维素膜。切滤纸和膜时一定要戴手套,因为手上的蛋白会污染膜。将切好的硝酸纤维素膜置于水上浸2 h才可使用。(用镊子捏住膜的一边轻轻置于有超纯水的平皿里,要使膜浮于水上,只有下层才与水接触。这样由于毛细管作用可使整个膜浸湿。若膜沉入水里,膜与水之间形成一层空气膜,这样会阻止膜吸水。

(2) 在加有转移液的搪瓷盘里放入转膜用的夹子、两块海绵垫、一支玻棒、滤纸和浸过的膜。

(3) 将夹子打开使黑的一面保持水平。在上面垫一张海绵垫,用玻棒来回擀几遍以擀走里面的气泡。(一手擀另一手要压住垫子使其不能随便移动。)在垫子上垫三层滤纸(可三张纸先叠在一起在垫于垫子上),

一手固定滤纸一手用玻棒擀去其中的气泡。

(4) 要先将玻璃板撬掉才可剥胶,撬的时候动作要轻,要在两个边上轻轻的反复撬。撬一会儿玻璃板便开始松动,直到撬去玻板。(撬时一定要小心,玻板很易裂。)除去小玻璃板后,将浓缩胶轻轻刮去(浓缩胶影响操作),要避免把分离胶刮破。小心剥下分离胶盖于滤纸上,用手调整使其与滤纸对齐,轻轻用玻棒擀去气泡。将膜盖于胶上,要盖满整个胶(膜盖下后不可再移动)并除气泡。在膜上盖3张滤纸并除去气泡。最后盖上另一个海绵垫,擀几下就可合起夹子。整个操作在转移液中进行,要不断的擀去气泡。膜两边的滤纸不能相互接触,接触后会发生短路。(转移液含甲醇,操作时要戴手套,实验室要开门以使空气流通。)

(5) 将夹子放入转移槽槽中,要使夹的黑面对槽的黑面,夹的白面对槽的红面。电转移时会产热,在槽的一边放一块冰来降温。一般用60 V转移2 h或40 V转移3 h。

(6) 转完后将膜用1×丽春红染液染5 min(于脱色摇床上摇)。然后用水冲洗掉没染上的染液就可看到膜上的蛋白。 将膜晾干备用。   

5. 免疫反应

(1) 将膜用TBS从下向上浸湿后,移至含有封闭液的平皿中,室温下脱色摇床上摇动封闭1h。

(2) 将一抗用TBST稀释至适当浓度(在1.5 ml 离心管中);撕下适当大小的一块儿保鲜膜铺于实验台面上,四角用水浸湿以使保鲜膜保持平整;将抗体溶液加到保鲜膜上;从封闭液中取出膜,用滤纸吸去残留液后,将膜蛋白面朝下放于抗体液面上,掀动膜四角以赶出残留气泡;室温下孵育1~2 h后,用TBST在室温下脱色摇床上洗两次,每次10 min;再用TBS洗一次,10 min。

(3) 同上方法准备二抗稀释液并与膜接触,室温下孵育1~2 h后,用TBST在室温下脱色摇床上洗两次,每次10 min;再用TBS洗一次,10 min,进行化学发光反应。

6. 化学发光,显影,定影

(1) 将A和B两种试剂在保鲜膜上等体积混合;1 min后,将膜蛋白面朝下与此混合液充分接触;1 min后,将膜移至另一保鲜膜上,去尽残液,包好,放入X-光片夹中。

(2) 在暗室中,将1×显影液和定影液分别到入塑料盘中;在红灯下取出X-光片,用切纸刀剪裁适当大小(比膜的长和宽均需大1 cm);打开X-光片夹,把X-光片放在膜上,一旦放上,便不能移动,关上X-光片夹,开始计时;根据信号的强弱适当调整曝光时间,一般为1 min或5 min,也可选择不同时间多次压片,以达最佳效果;曝光完成后,打开X-光片夹,取出X-光片,迅速浸入显影液中显影,待出现明显条带后,即刻终止显影。显影时间一般为1~2 min(20~25℃),温度过低时(低于16℃)需适当延长显影时间;显影结束后,马上把X-光片浸入定影液中,定影时间一般为5~10 min,以胶片透明为止;用自来水冲去残留的定影液后,室温下晾干。

应注意的是:显影和定影需移动胶片时,尽量拿胶片一角,手指甲不要划伤胶片,否则会对结果产生影响。

7. 凝胶图象分析

将胶片进行扫描或拍照,用凝胶图象处理系统分析目标带的分子量和净光密度值。

 

实验材料

蛋白质样品

试剂、试剂盒

裂解液 PBS SDS上样缓冲液 电泳缓冲液 转移缓冲液 丽春红染液 TBST TBS 洗脱抗体缓冲液 抗体

仪器、耗材

电泳仪 移液器 脱色摇床 显影仪

实验步骤

一、实验步骤 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

经验交流

提问

扫码关注「实验菌」,入科研社群,领学习资源

更有优质直播、研选好物、福利活动等你来!

感兴趣的产品

western blot

western blot

western blot配方

western blot 文库

western blot 细菌

western blot胶

组织western blot

western blot标记

western blot原料

感兴趣的厂家

普兰德(上海)贸易有限公司

无锡耐思生命科技股份有限公司

晶能生物技术(上海)有限公司

western blot 文库厂家

western blot 细菌厂家

western blot胶厂家

组织western blot厂家

western blot标记厂家

western blot原料厂家

版权声明

本网站所有注明“来源:丁香园”的文字、图片和音视频资料,版权均属于丁香园所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:丁香园”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

移动版: 实验详情页

WB(蛋白免疫印迹)

86 内容 4939 订阅

查看专题

相关实验Protocol 更多

Far western检测蛋白质相互作用

Western Blot 蛋白样品制备——蛋白质提取

免疫印迹法测定细胞分泌蛋白质含量

外泌体鉴定之 Western Blot:电泳

【兴趣小组】post-doctoral positions available(恭贺新春+蛋白版小公告牌+不定期更新+局限于US)

Western Blot详解(原理、试剂、步骤及问题解答)

考马斯亮蓝法测定蛋白质浓度的原理、步骤及注意事项

各类western转膜条件

推荐阅读 更多

Western Blot 蛋白质印迹实验

Western Blot 常见问题及解决方案(上)

Western Blot 样品制备

Western Blot 小白变身记

Western Blot 常见问题分析

免疫印迹实验相关原理介绍

我的询价

询价列表

点击加载更多

暂时没有已询价产品

发送产品

手机验证

快捷询价 发送名片

让更多商家联系我

当你希望让更多商家联系你时,可以勾选后发送询价,平台会将你的询价消息推荐给更多商家。

发送

提问

收藏

用户服务

意见反馈

合作咨询

关于丁香通

产品库

最新产品列表

丁香实验

用户服务中心

试用中心

丁香通新浪微博

公司信息

关于我们

联系我们

友情链接

法律声明

网站导航

加盟丁香园

我是买家

求购商品

品牌专区

品牌学堂

促销专区

我是卖家

服务报价

广告媒体

客户说明

广告规则

企业合作

无忧采购 轻松科研

科研好物关注研选号

意见反馈